Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 111(8): 1200-1215, 2023 08.
Article in English | MEDLINE | ID: mdl-36728346

ABSTRACT

Cell therapy is emerging as an effective treatment strategy for many diseases. Here we describe a novel approach to bone tissue repair that combines hydrogel-based cell therapy with low intensity pulsed ultrasound (LIPUS), an FDA approved treatment for fracture repair. Bone marrow-derived stromal cells (BMSCs) have been encapsulated in type I collagen hydrogels and mechanically stimulated using LIPUS-derived acoustic radiation force (ARF). We observed the expression and upward trend of load-sensitive, osteoblast-specific markers and determined that the extent of cell response is dependent on an optimal combination of both hydrogel stiffness and ARF intensity. Specifically, cells encapsulated in hydrogels of optimal stiffness respond at the onset of ultrasound by upregulating early bone-sensitive markers such as calcium, cyclooxygenase-2, and prostaglandin E2 , and later by supporting mineralized tissue formation after 21 days of culture. In vivo evaluation of a critical size calvarial defect in NOD scid gamma (NSG) mice indicated that the implantation of BMSC-laden hydrogels of optimal stiffness improved healing of calvarial defects after daily administration of ARF over 4 weeks. Collectively, these findings validate the efficacy of our system of localized cell delivery for treating bone defects where undifferentiated BMSCs are induced to the osteoblastic lineage. Further, in vivo healing may be enhanced via non-invasive transdermal mechanical stimulation of implanted cells using ARF.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Mice , Animals , Hydrogels/pharmacology , Ultrasonography , Collagen/metabolism , Cell- and Tissue-Based Therapy
2.
J Biomed Mater Res B Appl Biomater ; 105(7): 1963-1971, 2017 10.
Article in English | MEDLINE | ID: mdl-27300308

ABSTRACT

There are over 3 million bone fractures in the United States annually; over 30% of which require internal mechanical fixation devices to aid in the healing process. The current standard material used is a metal plate that is implanted onto the bone. However, metal fixation devices have many disadvantages, namely stress shielding and metal ion leaching. This study aims to fix these problems of metal implants by making a completely biodegradable material that will have a high modulus and exhibit great toughness. To accomplish this, long-fiber poly-l-lactic acid (PLLA) was utilized in combination with a matrix composed of polycaprolactone (PCL) and hydroxyapatite (HA) nano-rods. Through single fibril tensile tests, it was found that the PLLA fibers have a Young's modulus of 8.09 GPa. Synthesized HA nanorods have dimensions in the nanometer range with an aspect ratio over 6. By dip coating PLLA fibers in a suspension of PCL and HA and hot pressing the resulting coated fibers, dense fiber-reinforced samples were made having a flexural modulus up to 9.2 GPa and a flexural strength up to 187 MPa. The flexural modulus of cortical bone ranges from 7 to 25 GPa, so the modulus of the composite material falls into the range of bone. The typical flextural strength of bone is 130 MPa, and the samples here greatly exceed that with a strength of 187 MPa. After mechanical testing to failure the samples retained their shape, showing toughness with no catastrophic failure, indicating the possibility for use as a fixation material. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1963-1971, 2017.


Subject(s)
Absorbable Implants , Durapatite/chemistry , Nanotubes/chemistry , Orthopedic Fixation Devices , Polyesters/chemistry , Elastic Modulus
SELECTION OF CITATIONS
SEARCH DETAIL
...