Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 34(5): 823-32, 2006 May.
Article in English | MEDLINE | ID: mdl-16619131

ABSTRACT

Cryoplasty, a freezing therapy, is being used for the treatment of restenosis in peripheral arteries. In addition, cryo-preserved arteries are increasingly used in vascular grafts. While studies are being performed to establish the efficacy of such treatments, very little is known about the postcryosurgical or postcryo-preservation changes in mechanical properties of the arteries. Few studies have examined the effect of freezing in the absence of cryoprotective agents (CPAs), and the several studies done in the presence of CPAs have given mixed results. To examine this issue further, we froze pig femoral arteries in a controlled rate freezer, using an aluminum probe, both in the presence at (-80 degrees C to 1 degrees C/min) and absence (at -20 degrees C for 2 or 5 mins) of CPA and Fetal bovine serum (FBS). Following freezing, artery samples were subjected to uniaxial tensile testing. The weights of the tissue were measured before and after freezing. Our results suggest that freezing does have an effect on stress-strain properties, particularly in the low stress region corresponding to physiological conditions. The mechanisms of this change in mechanical properties may include the loss of smooth muscle cell viability, damage to extra cellular matrix (ECM), bulk redistribution of water, or changes in alignment caused by ice crystal growth. In the case of samples frozen in the absence of CPA or FBS, the results indicated a drastic reduction in weight of the tissue suggesting the importance of bulk water redistribution as one underlying mechanism. To further examine potential mechanisms, we subjected cryopreserved vessels to the same uniaxial tests. The extent of changes in mechanical properties and bulk water redistribution was greatly attenuated; reinforcing that water movement might play a role in the changes observed with freezing.


Subject(s)
Cryopreservation/methods , Femoral Artery/cytology , Femoral Artery/physiology , Freezing , Mechanotransduction, Cellular/physiology , Models, Cardiovascular , Water/metabolism , Adaptation, Physiological/physiology , Animals , Biomechanical Phenomena/methods , Body Temperature/physiology , Computer Simulation , Elasticity , Extracellular Matrix/physiology , Extracellular Matrix/ultrastructure , In Vitro Techniques , Stress, Mechanical , Swine
2.
Ann Biomed Eng ; 33(7): 972-82, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16060538

ABSTRACT

Cryosurgery is emerging as a promising treatment modality for various cancers, but there are still challenges to be addressed to improve its efficacy. Two primary challenges are determining thermal injury thresholds for various types of cell/tissue, and understanding of the mechanisms of freezing induced cell/tissue injury within a cryolesion. To address these challenges, various model systems ranging from cell suspensions to three-dimensional in vivo tissues have been developed and used. However, these models are either oversimplifications of in vivo tissues or difficult to control and extract precise experimental conditions from. Therefore, a more readily controllable model system with tissue-like characteristics is needed. In this study, a cryoinjury model was developed using tissue engineering technology, and the capabilities of the model were demonstrated. Engineered tissue equivalents (TEs) were constructed by seeding and culturing cells in a type I collagen matrix. Two different cell lines were used in this study, AT-1 rat prostate tumor cells and LNCaP human prostate cancer cells. The constructed TEs underwent a freeze/thaw cycle imitating in vivo cryosurgery. Thermal conditions within TEs during freeze/thaw cycles were characterized, and the responses of TEs to these thermal conditions including freezing induced cellular injury and extracellular matrix damage were investigated at three different time points. The results illustrate the feasibility to establish thermal thresholds of cryoinjury for different cell/tissue types using the presently developed model, and its potential capabilities to study cell death mechanisms, cell proliferation or migration, and extracellular matrix structural damage after a freeze/thaw cycle.


Subject(s)
Cryosurgery , Models, Biological , Animals , Biomedical Engineering , Cell Death , Cell Line , Cell Proliferation , Cryosurgery/methods , Freezing , Humans , Neoplasms , Rats , Tissue Engineering
3.
Cryobiology ; 50(2): 162-73, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15843006

ABSTRACT

Restenosis is a major health care problem, with approximately 40% of angioplasties resulting in restenosis. Mechanisms related to elastic recoil, cell proliferation, and extracellular matrix (ECM) synthesis are implicated. In vivo studies have demonstrated the potential for cryotherapy to combat the process of restenosis, but the mechanisms whereby freezing and/or cooling can reduce or eliminate smooth muscle cell (SMC) proliferation and ECM synthesis are not well known. While in vivo testing is ultimately necessary, in vitro models can provide important information on thermal parameters and mechanisms of injury. However, it is important to carefully choose the model system for in vitro work on cryoinjury characterization to adequately reflect the clinical situation. In this study, we examined the differences in response to cryoinjury by SMCs from different species (rat, pig, and human) and in different cellular environments (suspension vs. tissue equivalent). Tissue equivalents, composed of cells embedded in collagen or fibrin gel, provide a 3-D tissue-like environment, while allowing for controlled composition. As reported here, all SMCs showed similar trends, but rat cells appeared less sensitive to cooling at faster cooling rates in suspension, while human SMCs were less sensitive to temperatures just above freezing when embedded in collagen. In addition, the SMCs were less sensitive in suspension than they were in collagen. Cells in suspension exhibited 70% viability at -11 degrees C, whereas cells in the tissue equivalent model showed only 30% survival. Future studies will aim to more adequately represent the conditions in restenosis by providing inflammatory and proliferative cues to the cells.


Subject(s)
Cryotherapy , Muscle, Smooth, Vascular/cytology , Angioplasty/methods , Animals , Cell Survival , Fibrin/pharmacology , Graft Occlusion, Vascular/therapy , Humans , In Vitro Techniques , Models, Biological , Rats , Species Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...