Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(1): 8, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092992

ABSTRACT

KEY MESSAGE: R-BPMV is located within a recently expanded TNL cluster in the Phaseolus genus with suppressed recombination and known for resistance to multiple pathogens including potyviruses controlled by the I gene. Bean pod mottle virus (BPMV) is a comovirus that infects common bean and legumes in general. BPMV is distributed throughout the world and is a major threat on soybean, a closely related species of common bean. In common bean, BAT93 was reported to carry the R-BPMV resistance gene conferring resistance to BPMV and linked with the I resistance gene. To fine map R-BPMV, 182 recombinant inbred lines (RILs) derived from the cross BAT93 × JaloEEP558 were genotyped with polymerase chain reaction (PCR)-based markers developed using genome assemblies from G19833 and BAT93, as well as BAT93 BAC clone sequences. Analysis of RILs carrying key recombination events positioned R-BPMV to a target region containing at least 16 TIR-NB-LRR (TNL) sequences in BAT93. Because the I cluster presents a suppression of recombination and a large number of repeated sequences, none of the 16 TNLs could be excluded as R-BPMV candidate gene. The evolutionary history of the TNLs for the I cluster were reconstructed using microsynteny and phylogenetic analyses within the legume family. A single I TNL was present in Medicago truncatula and lost in soybean, mirroring the absence of complete BPMV resistance in soybean. Amplification of TNLs in the I cluster predates the divergence of the Phaseolus species, in agreement with the emergence of R-BPMV before the separation of the common bean wild centers of diversity. This analysis provides PCR-based markers useful in marker-assisted selection (MAS) and laid the foundation for cloning of R-BPMV resistance gene in order to transfer the resistance into soybean.


Subject(s)
Comovirus , Phaseolus , Phaseolus/genetics , Phylogeny , Genotype , Glycine max/genetics
2.
Plants (Basel) ; 11(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35956473

ABSTRACT

Bean anthracnose caused by the hemibiotrophic fungus Colletotrichum lindemuthianum is one of the most important diseases of common bean (Phaseolus vulgaris) in the world. In the present study, the whole transcriptome of common bean infected with C. lindemuthianum during compatible and incompatible interactions was characterized at 48 and 72 hpi, corresponding to the biotrophy phase of the infection cycle. Our results highlight the prominent role of pathogenesis-related (PR) genes from the PR10/Bet vI family as well as a complex interplay of different plant hormone pathways including Ethylene, Salicylic acid (SA) and Jasmonic acid pathways. Gene Ontology enrichment analysis reveals that infected common bean seedlings responded by down-regulation of photosynthesis, ubiquitination-mediated proteolysis and cell wall modifications. In infected common bean, SA biosynthesis seems to be based on the PAL pathway instead of the ICS pathway, contrarily to what is described in Arabidopsis. Interestingly, ~30 NLR were up-regulated in both contexts. Overall, our results suggest that the difference between the compatible and incompatible reaction is more a question of timing and strength, than a massive difference in differentially expressed genes between these two contexts. Finally, we used RT-qPCR to validate the expression patterns of several genes, and the results showed an excellent agreement with deep sequencing.

3.
J Exp Bot ; 72(10): 3569-3581, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33693665

ABSTRACT

Identifying the molecular basis of resistance to pathogens is critical to promote a chemical-free cropping system. In plants, nucleotide-binding leucine-rich repeat constitute the largest family of disease resistance (R) genes, but this resistance can be rapidly overcome by the pathogen, prompting research into alternative sources of resistance. Anthracnose, caused by the fungus Colletotrichum lindemuthianum, is one of the most important diseases of common bean. This study aimed to identify the molecular basis of Co-x, an anthracnose R gene conferring total resistance to the extremely virulent C. lindemuthianum strain 100. To that end, we sequenced the Co-x 58 kb target region in the resistant JaloEEP558 (Co-x) common bean and identified KTR2/3, an additional gene encoding a truncated and chimeric CRINKLY4 kinase, located within a CRINKLY4 kinase cluster. The presence of KTR2/3 is strictly correlated with resistance to strain 100 in a diversity panel of common beans. Furthermore, KTR2/3 expression is up-regulated 24 hours post-inoculation and its transient expression in a susceptible genotype increases resistance to strain 100. Our results provide evidence that Co-x encodes a truncated and chimeric CRINKLY4 kinase probably resulting from an unequal recombination event that occurred recently in the Andean domesticated gene pool. This atypical R gene may act as a decoy involved in indirect recognition of a fungal effector.


Subject(s)
Colletotrichum , Phaseolus , Chromosome Mapping , Genes, Plant , Phaseolus/genetics , Plant Diseases
4.
Genes (Basel) ; 13(1)2021 12 27.
Article in English | MEDLINE | ID: mdl-35052407

ABSTRACT

RNA silencing serves key roles in a multitude of cellular processes, including development, stress responses, metabolism, and maintenance of genome integrity. Dicer, Argonaute (AGO), double-stranded RNA binding (DRB) proteins, RNA-dependent RNA polymerase (RDR), and DNA-dependent RNA polymerases known as Pol IV and Pol V form core components to trigger RNA silencing. Common bean (Phaseolus vulgaris) is an important staple crop worldwide. In this study, we aimed to unravel the components of the RNA-guided silencing pathway in this non-model plant, taking advantage of the availability of two genome assemblies of Andean and Meso-American origin. We identified six PvDCLs, thirteen PvAGOs, 10 PvDRBs, 5 PvRDRs, in both genotypes, suggesting no recent gene amplification or deletion after the gene pool separation. In addition, we identified one PvNRPD1 and one PvNRPE1 encoding the largest subunits of Pol IV and Pol V, respectively. These genes were categorized into subgroups based on phylogenetic analyses. Comprehensive analyses of gene structure, genomic localization, and similarity among these genes were performed. Their expression patterns were investigated by means of expression models in different organs using online data and quantitative RT-PCR after pathogen infection. Several of the candidate genes were up-regulated after infection with the fungus Colletotrichum lindemuthianum.


Subject(s)
Colletotrichum/physiology , Gene Expression Regulation, Plant , Genome-Wide Association Study , Phaseolus/genetics , Plant Diseases/genetics , Plant Proteins/metabolism , RNA Interference , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Phaseolus/growth & development , Phaseolus/immunology , Phaseolus/microbiology , Phylogeny , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Transcriptome
5.
Genes (Basel) ; 11(7)2020 07 21.
Article in English | MEDLINE | ID: mdl-32708324

ABSTRACT

Plants are under strong evolutionary pressure to maintain surveillance against pathogens. One major disease resistance mechanism is based on NB-LRR (NLR) proteins that specifically recognize pathogen effectors. The cluster organization of the NLR gene family could favor sequence exchange between NLR genes via recombination, favoring their evolutionary dynamics. Increasing data, based on progeny analysis, suggest the existence of a link between the perception of biotic stress and the production of genetic diversity in the offspring. This could be driven by an increased rate of meiotic recombination in infected plants, but this has never been strictly demonstrated. In order to test if pathogen infection can increase DNA recombination in pollen meiotic cells, we infected Arabidopsis Fluorescent Tagged Lines (FTL) with the virulent bacteria Pseudomonas syringae. We measured the meiotic recombination rate in two regions of chromosome 5, containing or not an NLR gene cluster. In all tested intervals, no significant difference in genetic recombination frequency between infected and control plants was observed. Although it has been reported that pathogen exposure can sometimes increase the frequency of recombinant progeny in plants, our findings suggest that meiotic recombination rate in Arabidopsis may be resilient to at least some pathogen attack. Alternative mechanisms are discussed.


Subject(s)
Homologous Recombination , Meiosis , Plant Diseases/genetics , Arabidopsis , Chromosomes, Plant/chemistry , Chromosomes, Plant/genetics , Fluorescent Dyes/chemistry , NLR Proteins/genetics , Plant Diseases/microbiology , Pollen/genetics , Pollen/microbiology , Pseudomonas syringae/pathogenicity
6.
Mol Plant Pathol ; 19(11): 2516-2523, 2018 11.
Article in English | MEDLINE | ID: mdl-30011120

ABSTRACT

Crop diseases cause significant yield losses, and the use of resistant cultivars can effectively mitigate these losses and control many plant diseases. Most plant resistance (R) genes encode immune receptors composed of nucleotide-binding and leucine-rich repeat (NLR) domains. These proteins mediate the specific recognition of pathogen avirulence effectors to induce defence responses. However, NLR-triggered immunity can be associated with a reduction in growth and yield, so-called 'fitness costs'. Recent data have shown that plants use an elaborate interplay of different mechanisms to control NLR gene transcript levels, as well as NLR protein abundance and activity, to avoid the associated cost of resistance in the absence of a pathogen. In this review, we discuss the different levels of NLR regulation (transcriptional, post-transcriptional and at the protein level). We address the apparent need for plants to maintain diverse modes of regulation. A recent model suggesting an equilibrium 'ON/OFF state' of NLR proteins, in the absence of a pathogen, provides the context for our discussion.


Subject(s)
Disease Resistance/genetics , NLR Proteins/metabolism , Plants/genetics , Plants/immunology , Gene Expression Regulation, Plant , NLR Proteins/genetics , Plant Immunity/genetics
7.
DNA Res ; 25(2): 161-172, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29149287

ABSTRACT

In plants, a key class of genes comprising most of disease resistance (R) genes encodes Nucleotide-binding leucine-rich repeat (NL) proteins. Access to common bean (Phaseolus vulgaris) genome sequence provides unparalleled insight into the organization and evolution of this large gene family (∼400 NL) in this important crop. As observed in other plant species, most common bean NL are organized in cluster of genes. However, a particularity of common bean is that these clusters are often located in subtelomeric regions close to terminal knobs containing the satellite DNA khipu. Phylogenetically related NL are spread between different chromosome ends, suggesting frequent exchanges between non-homologous chromosomes. NL peculiar location, in proximity to heterochromatic regions, led us to study their DNA methylation status using a whole-genome cytosine methylation map. In common bean, NL genes displayed an unusual body methylation pattern since half of them are methylated in the three contexts, reminiscent of the DNA methylation pattern of repeated sequences. Moreover, 90 NL were also abundantly targeted by 24 nt siRNA, with 90% corresponding to methylated NL genes. This suggests the existence of a transcriptional gene silencing mechanism of NL through the RdDM (RNA-directed DNA methylation) pathway in common bean that has not been described in other plant species.


Subject(s)
DNA Methylation , DNA, Satellite , Disease Resistance , NLR Proteins/genetics , Phaseolus/genetics , Epigenesis, Genetic , Epigenomics , Genes, Plant , Genomics , Phaseolus/metabolism , Phaseolus/physiology , Plant Diseases , Sequence Analysis, DNA
8.
Plant Sci ; 242: 351-357, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26566851

ABSTRACT

Common bean (Phaseolus vulgaris) is the most important grain legume for direct human consumption in the world, particularly in developing countries where it constitutes the main source of protein. Unfortunately, common bean yield stability is constrained by a number of pests and diseases. As use of resistant genotypes is the most economic and ecologically safe means for controlling plant diseases, efforts have been made to genetically characterize resistance genes (R genes) in common bean. Despite its agronomic importance, genomic resources available in common bean were limited until the recent sequencing of common bean genome (Andean genotype G19833). Besides allowing the annotation of Nucleotide Binding-Leucine Rich Repeat (NB-LRR) encoding gene family, which is the prevalent class of disease R genes in plants, access to the whole genome sequence of common bean can be of great help for intense selection to increase the overall efficiency of crop improvement programs using marker-assisted selection (MAS). This review presents the state of the art of common bean NB-LRR gene clusters, their peculiar location in subtelomeres and correlation with genetically characterized monogenic R genes, as well as how the availability of the whole genome sequence can boost the development of molecular markers for MAS.


Subject(s)
Disease Resistance/genetics , Genetic Markers/genetics , Genome, Plant/genetics , Phaseolus/genetics , Plant Diseases/genetics , Sequence Analysis, DNA/methods , Crops, Agricultural/genetics , Genes, Plant/genetics , Plant Breeding/methods , Selective Breeding
9.
PLoS One ; 6(10): e26696, 2011.
Article in English | MEDLINE | ID: mdl-22039535

ABSTRACT

In somatic cells, three major pathways are involved in the repair of DNA double-strand breaks (DBS): Non-Homologous End Joining (NHEJ), Single-Strand Annealing (SSA) and Homologous Recombination (HR). In somatic and meiotic HR, DNA DSB are 5' to 3' resected, producing long 3' single-stranded DNA extensions. Brca2 is essential to load the Rad51 recombinase onto these 3' overhangs. The resulting nucleofilament can thus invade a homologous DNA sequence to copy and restore the original genetic information. In Arabidopsis, the inactivation of Brca2 specifically during meiosis by an RNAi approach results in aberrant chromosome aggregates, chromosomal fragmentation and missegregation leading to a sterility phenotype. We had previously suggested that such chromosomal behaviour could be due to NHEJ. In this study, we show that knock-out plants affected in both BRCA2 genes show the same meiotic phenotype as the RNAi-inactivated plants. Moreover, it is demonstrated that during meiosis, neither NHEJ nor SSA compensate for HR deficiency in BRCA2-inactivated plants. The role of the plant-specific DNA Ligase6 is also excluded. The possible mechanism(s) involved in the formation of these aberrant chromosomal bridges in the absence of HR during meiosis are discussed.


Subject(s)
Arabidopsis/genetics , BRCA2 Protein/genetics , Chromosome Aberrations , DNA End-Joining Repair , Meiosis/genetics , Base Sequence , DNA Primers , Phenotype , Polymerase Chain Reaction/methods
10.
Genes Dev ; 22(9): 1153-8, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18451106

ABSTRACT

The nonhomologous end-joining (NHEJ) repair pathway is inhibited at telomeres, preventing chromosome fusion. In budding yeast Saccharomyces cerevisiae, the Rap1 protein directly binds the telomere sequences and is required for NHEJ inhibition. Here we show that the Rap1 C-terminal domain establishes two parallel inhibitory pathways through the proteins Rif2 and Sir4. In addition, the central domain of Rap1 inhibits NHEJ independently of Rif2 and Sir4. Thus, Rap1 establishes several independent pathways to prevent telomere fusions. We discuss a possible mechanism that would explain Rif2 multifunctionality at telomeres and the recent evolutionary origin of Rif2 from an origin recognition complex (ORC) subunit.


Subject(s)
DNA Repair , Recombination, Genetic/genetics , Signal Transduction , Telomere/genetics , Amino Acid Sequence , Carrier Proteins/genetics , Models, Genetic , Molecular Sequence Data , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid , Shelterin Complex , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Telomere-Binding Proteins/genetics , Transcription Factors/genetics
11.
Nucleic Acids Res ; 36(10): 3244-51, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18420657

ABSTRACT

Somatic genome assembly in the ciliate Paramecium involves the precise excision of thousands of short internal eliminated sequences (IESs) that are scattered throughout the germline genome and often interrupt open reading frames. Excision is initiated by double-strand breaks centered on the TA dinucleotides that are conserved at each IES boundary, but the factors that drive cleavage site recognition remain unknown. A degenerate consensus was identified previously at IES ends and genetic analyses confirmed the participation of their nucleotide sequence in efficient excision. Even for wild-type IESs, however, variant excision patterns (excised or nonexcised) may be inherited maternally through sexual events, in a homology-dependent manner. We show here that this maternal epigenetic control interferes with the targeting of DNA breaks at IES ends. Furthermore, we demonstrate that a mutation in the TA at one end of an IES impairs DNA cleavage not only at the mutant end but also at the wild-type end. We conclude that crosstalk between both ends takes place prior to their cleavage and propose that the ability of an IES to adopt an excision-prone conformation depends on the combination of its nucleotide sequence and of additional determinants.


Subject(s)
DNA, Protozoan/metabolism , Paramecium tetraurelia/genetics , AT Rich Sequence , Animals , DNA, Protozoan/chemistry , Epigenesis, Genetic , Macronucleus/genetics , Models, Genetic , Nucleic Acid Conformation , Paramecium tetraurelia/growth & development , Paramecium tetraurelia/metabolism , Point Mutation
12.
Mol Cell Biol ; 23(20): 7152-62, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14517286

ABSTRACT

In ciliates, the development of the somatic macronucleus involves the programmed excision of thousands of internal eliminated sequences (IES) scattered throughout the germ line genome. Previous work with Tetrahymena thermophila has suggested that excision is initiated by a staggered double-strand break (DSB) at one IES end. Nucleophilic attack of the other end by the 3'OH group carried by the firstly broken chromosome end leads to macronuclear junction closure. In this study, we mapped the 3'OH and 5'PO(4) groups that are developmentally released at Paramecium IES boundaries, which are marked by two conserved TA dinucleotides, one of which remains in the macronuclear genome after excision. We show that initiating DSBs at both ends generate 4-base 5' overhangs centered on the TA. Based on the observed processing of the 5'-terminal residue of each overhang, we present a new model for the precise closure of macronuclear chromosomes in Paramecium tetraurelia, different from that previously proposed for tetrahymena. In our model, macronucleus-destined broken ends are aligned through the partial pairing of their 5'-nTAn-3' extensions and joined after trimming of the 5' flaps.


Subject(s)
DNA Damage , Paramecium tetraurelia/genetics , Animals , Base Sequence , Chromosomes/drug effects , DNA Transposable Elements , Genome, Protozoan , Models, Genetic , Molecular Sequence Data , Oligonucleotides/chemistry , Time Factors
13.
Curr Biol ; 13(10): 843-8, 2003 May 13.
Article in English | MEDLINE | ID: mdl-12747833

ABSTRACT

In animals, double-stranded short interfering RNA (siRNA) and single-stranded microRNA (miRNA) regulate gene expression by targeting homologous mRNA for cleavage or by interfering with their translation, respectively. siRNAs are processed from injected or transgene-derived, long, perfect double-stranded RNA (dsRNA), while miRNAs are processed from short, imperfect dsRNA precursors transcribed from endogenous intergenic regions. In plants, both siRNAs and miRNAs activate cleavage of homologous RNA targets, but little is known about the genes controlling their production or action. The SGS2/SDE1 protein contributes to produce transgene siRNA, while DCL1 and HEN1 contribute to endogenous miRNA accumulation. Here, we show that: i) SGS2, SGS3, AGO1, and HEN1 contribute to produce transgene siRNA involved in sense posttranscriptional gene silencing (S-PTGS); ii) HEN1, but not SGS2, SGS3, or AGO1, contributes to the accumulation of the endogenous miR171 miRNA and to the cleavage of Scarecrow target mRNA by miR171; iii) SGS2, SGS3, AGO1, and HEN1 contribute to resistance against cucumber mosaic virus, but not to siRNA and IR-PTGS triggered by hairpin transgenes directly producing perfect dsRNA; and iv) the actions of HEN1 in miRNA/development and siRNA/S-PTGS can be uncoupled by single-point mutations at different positions in the protein.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Arabidopsis/genetics , Gene Silencing , MicroRNAs/genetics , Plant Diseases/virology , RNA, Small Interfering/genetics , Transgenes , Arabidopsis Proteins/genetics , Cucumovirus/genetics , Genes, Plant , MicroRNAs/metabolism , Phenotype , Plant Leaves/genetics , Plants, Genetically Modified , RNA Processing, Post-Transcriptional , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...