Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Wound Repair Regen ; 24(2): 247-62, 2016 03.
Article in English | MEDLINE | ID: mdl-26663515

ABSTRACT

Fibroblasts are important players in regulating tissue homeostasis. In the dermis, they are involved in wound healing where they differentiate into contractile myofibroblasts leading to wound closure. In nonhealing chronic wounds, fibroblasts fail to undertake differentiation. We established and used a human ex vivo model of chronic wounds where fibroblasts can undergo normal myofibroblast differentiation, or take on a nondifferentiable pathological state. At the whole genome scale, we identified the genes that are differentially regulated in these two cell fates. By coupling the search of evolutionary conserved regulatory elements with global gene network expression changes, we identified transcription factors (TF) potentially involved in myofibroblast differentiation, and constructed a network of relationship between these key factors. Among these, we found that TCF4, SOX9, EGR2, and FOXS1 are major regulators of fibroblast to myofibroblast differentiation. Conversely, down-regulation of MEOX2, SIX2, and MAF causes reprogramming of fibroblasts to myofibroblasts even in absence of TGF-ß, the natural inducer of myofibroblast differentiation. These results provide insight into the fibroblast differentiation program and reveal a TF network essential for cellular reprogramming. They could lead to the development of new therapeutics to treat fibroblast-related human pathologies.


Subject(s)
Cellular Reprogramming/physiology , Myofibroblasts/cytology , Varicose Ulcer/pathology , Wound Healing/physiology , Aged , Aged, 80 and over , Cell Differentiation , Cells, Cultured , Cellular Reprogramming Techniques , Down-Regulation , Exudates and Transudates/cytology , Humans , Middle Aged , RNA, Small Interfering/pharmacology , Transforming Growth Factor beta/metabolism
2.
Biologicals ; 43(1): 31-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25466699

ABSTRACT

Heparin is one of the main pharmaceutical products manufactured from raw animal material. In order to describe the viral burden associated with this raw material, we performed high-throughput sequencing (HTS) on mucus samples destined for heparin manufacturing, which were collected from European pigs. We identified Circoviridae and Parvoviridae members as the most prevalent contaminating viruses, together with viruses from the Picornaviridae, Astroviridae, Reoviridae, Caliciviridae, Adenoviridae, Birnaviridae, and Anelloviridae families. Putative new viral species were also identified. The load of several known or novel small non-enveloped viruses, which are particularly difficult to inactivate or eliminate during heparin processing, was quantified by qPCR. Analysis of the combined HTS and specific qPCR results will influence the refining and validation of inactivation procedures, as well as aiding in risk analysis of viral heparin contamination.


Subject(s)
Heparin/biosynthesis , High-Throughput Screening Assays/methods , Intestines/virology , Mucus/virology , Viruses/classification , Animals , Base Sequence , DNA Primers , Real-Time Polymerase Chain Reaction , Swine
3.
Biologicals ; 42(4): 218-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24930452

ABSTRACT

Specific Pathogen Free (SPF) embryonated eggs are used for the production of many veterinary and human vaccines. We have used High Throughput Sequencing to screen allantoic fluids and embryos for the presence of encapsidated viral genomes and viral transcripts, respectively. SPF eggs from two different producers were tested. We evidenced sequences corresponding to known endogenous retroviruses and sequences of Avian Leukosis Virus, but no sequence that might suggest a productive infection of eggs with a virus even distant from known viruses. Our results strongly suggest that SPF eggs such as those used for this study represent a safe substrate for the production of vaccines.


Subject(s)
Eggs/analysis , Eggs/virology , High-Throughput Nucleotide Sequencing/methods , Specific Pathogen-Free Organisms , Animals , Avian Leukosis Virus/genetics , Chick Embryo , Chickens/virology , DNA, Viral/analysis , Endogenous Retroviruses/genetics , RNA, Viral/analysis , Vaccines/biosynthesis
4.
Biologicals ; 42(3): 145-52, 2014 May.
Article in English | MEDLINE | ID: mdl-24661556

ABSTRACT

Fetal bovine serum (FBS) and trypsin are reagents used in cell culture and have been the source of viral contamination of pharmaceutical products. We performed high throughput sequencing (HTS) of two pools of commercial batches of FBS and three commercial batches of trypsin. Taxonomies were assigned by comparing sequences of contigs and singletons to the entire NCBI nucleic acid and protein databases. The same major viral species were evidenced between batches of a given reagent but the proportion of viral reads among total reads varied markedly between samples (from 0.002% to 22.7%). In FBS, the sequences found were mainly from bovine viral diarrhea virus (BVDV) 1 to 3 and bovine parvovirus 3 (BPV3). The BVDV sequences derived from FBS showed only minor discrepancies with primers generally used for the screening of BVDV. Viral sequences in trypsin were mainly from porcine circovirus type 2. Other known viral sequences at lower read counts and potential new viral species (bovine parvovirus and bovine pegivirus) were evidenced. The load of some known and new viruses detected by HTS could be quantified by qPCR. Results of HTS provide a framework for evaluating the pertinence of control measures including the design of PCRs, bioassays and inactivation procedures.


Subject(s)
Diarrhea Viruses, Bovine Viral/classification , High-Throughput Nucleotide Sequencing/methods , Polyomavirus/classification , Animals , Cattle , Cells, Cultured , Diarrhea Viruses, Bovine Viral/genetics , Polymerase Chain Reaction , Polyomavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...