Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0302459, 2024.
Article in English | MEDLINE | ID: mdl-38809939

ABSTRACT

Saccadic eye movements enable us to search for the target of interest in a crowded scene or, in the case of goal-directed saccades, to simply bring the image of the peripheral target to the very centre of the fovea. This mechanism extends the use of the superior image processing performance of the fovea over a large visual field. We know that visual information is processed quickly at the end of each saccade but estimates of the times involved remain controversial. This study aims to investigate the processing of visual information during post fixation oscillations of the eyeball. A new psychophysical test measures the combined eye movement response latencies, including fixation duration and visual processing times. When the test is used in conjunction with an eye tracker, each component that makes up the 'integrated saccade latency' time, from the onset of the peripheral stimulus to the correct interpretation of the information carried by the stimulus, can be measured and the discrete components delineated. The results show that the time required to process and encode the stimulus attribute of interest at the end of a saccade is longer than the time needed to carry out the same task in the absence of an eye movement. We propose two principal hypotheses, each of which can account for this finding. 1. The known inhibition of afferent retinal signals during fast eye movements extends beyond the end point of the saccade. 2. The extended visual processing times measured when saccades are involved are caused by the transient loss of spatial resolution due to eyeball instability during post-saccadic oscillations. The latter can best be described as retinal image smear with greater loss of spatial resolution expected for stimuli of low luminance contrast.


Subject(s)
Fixation, Ocular , Reaction Time , Saccades , Visual Perception , Humans , Saccades/physiology , Adult , Male , Female , Reaction Time/physiology , Visual Perception/physiology , Fixation, Ocular/physiology , Young Adult , Photic Stimulation , Visual Fields/physiology , Time Factors
2.
Ultrason Sonochem ; 101: 106724, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38100894

ABSTRACT

The dual-transducer support structure discussed has the advantages of a simple structure and low cost, as well as allowing for the use of both Traveling-Wave (TW) and Standing-Wave (SW) acoustic transportation, supporting its use in pharmaceutical and biochemical analysis, for example. By adjusting the distance between the vibrating plate and the reflector which forms SW field in the y direction, the control of the position of the SW nodes or the TW component along the x direction allows the formation of a Two-Dimensional Standing Wave (2D-SW) or a Traveling Wave (TW) acoustic field, and these could be used for transportation in the x direction. It has been found that the x position of the SW nodes can be adjusted through changing the temporal phase shift, θ, which permits multiple objects to be transported using the 2D-SW mode. By comparison, TWs in the opposite direction could be generated at a pair of specific temporal phase shifts, allowing fast transportation using the TW mode. In this research work, an experiment has been carried out to transport polystyrene spheres using the two modes by programming the temporal phase shift, θ, this illustrating that precise position control of the multiple objects transported was possible using the 2D-SW mode, while high-speed transportation (up to 540 mm/s) was realized using the TW mode, showing that the dual-transducer support structure could be used effectively for accurate and fast transportation. As a fully non-contact method, the dual-transducer support structure can be seen to work in the 2D-SW mode for reaction synthesis or detection applications, and also in TW mode for rapid sample transportation applications.

3.
Front Bioeng Biotechnol ; 11: 1276485, 2023.
Article in English | MEDLINE | ID: mdl-37929199

ABSTRACT

Acoustic manipulation techniques have gained significant attention across various fields, particularly in medical diagnosis and biochemical research, due to their biocompatibility and non-contact operation. In this article, we review the broad range of biomedical applications of micro/nano-motors that use acoustic manipulation methods, with a specific focus on cell manipulation, targeted drug release for cancer treatment and genetic disease diagnosis. These applications are facilitated by acoustic-propelled micro/nano-motors and nanoparticles which are manipulated by acoustic tweezers. Acoustic systems enable high precision positioning and can be effectively combined with magnetic manipulation techniques. Furthermore, acoustic propulsion facilitates faster transportation speeds, making it suitable for tasks in blood flow, allowing for precise positioning and in-body manipulation of cells, microprobes, and drugs. By summarizing and understanding these acoustic manipulation methods, this review aims to provide a summary and discussion of the acoustic manipulation methods for biomedical research, diagnostic, and therapeutic applications.

4.
Appl Opt ; 62(12): 3160-3168, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37133164

ABSTRACT

Recognizing that wavelength modulation spectroscopy (WMS) is particularly important in the development of high-sensitivity gas sensing systems, this paper presents a detailed analysis of the R 1f /Δ I 1 WMS technique that has recently been successfully demonstrated for calibration-free measurements of the parameters that support detecting multiple gases under challenging conditions. In this approach, the magnitude of the 1f WMS signal (R 1f ) was normalized by using the laser's linear intensity modulation (Δ I 1) to obtain the quantity R 1f /Δ I 1 that is shown to be unaffected by large variations in R 1f itself due to the variations in the intensity of the received light. In this paper, different simulations have been used to explain the approach taken and the advantages that it shows. A 40 mW, 1531.52 nm near-infrared distributed feedback (DFB) semiconductor laser was used to extract the mole fraction of acetylene in a single-pass configuration. The work has shown a detection sensitivity of 0.32 ppm for 28 cm (0.089 ppm-m) with an optimum integration time of 58 s. The detection limit achieved has been shown to be better than the value of 1.53 ppm (0.428 ppm-m) for R 2f WMS by a factor of 4.7, which is a significant improvement.

5.
Sci Adv ; 9(18): eadg4501, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37146139

ABSTRACT

Swimming microrobots guided in the circulation system offer considerable promise in precision medicine but currently suffer from problems such as limited adhesion to blood vessels, intensive blood flow, and immune system clearance-all reducing the targeted interaction. A swimming microrobot design with clawed geometry, a red blood cell (RBC) membrane-camouflaged surface, and magnetically actuated retention is discussed, allowing better navigation and inspired by the tardigrade's mechanical claw engagement, coupled to an RBC membrane coating, to minimize blood flow impact. Using clinical intravascular optical coherence tomography in vivo, the microrobots' activity and dynamics in a rabbit jugular vein was monitored, illustrating very effective magnetic propulsion, even against a flow of ~2.1 cm/s, comparable with rabbit blood flow characteristics. The equivalent friction coefficient with magnetically actuated retention is elevated ~24-fold, compared to magnetic microspheres, achieving active retention at 3.2 cm/s, for >36 hours, showing considerable promise across biomedical applications.


Subject(s)
Cardiovascular System , Swimming , Animals , Rabbits , Swimming/physiology , Magnetics
6.
Micromachines (Basel) ; 13(8)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-36014146

ABSTRACT

Microfluidics is used in many applications ranging from chemistry, medicine, biology and biomedical research, and the ability to measure pH values in-situ is an important parameter for creating and monitoring environments within a microfluidic chip for many such applications. We present a portable, optical fibre-based sensor for monitoring the pH based on the fluorescent intensity change of an acrylamidofluorescein dye, immobilized on the tip of a multimode optical fibre, and its performance is evaluated in-situ in a microfluidic channel. The sensor showed a sigmoid response over the pH range of 6.0-8.5, with a maximum sensitivity of 0.2/pH in the mid-range at pH 7.5. Following its evaluation, the sensor developed was used in a single microfluidic PDMS channel and its response was monitored for various flow rates within the channel. The results thus obtained showed that the sensor is sufficiently robust and well-suited to be used for measuring the pH value of the flowing liquid in the microchannel, allowing it to be used for a number of practical applications in 'lab-on-a-chip' applications where microfluidics are used. A key feature of the sensor is its simplicity and the ease of integrating the sensor with the microfluidic channel being probed.

7.
Lab Chip ; 22(18): 3402-3411, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35899764

ABSTRACT

Droplet actuation using Surface Acoustic Wave (SAW) technology has been widely employed in 'lab-on-a-chip' applications, such as for on-chip Polymerase Chain Reactions. The current strategy uses the exciter-absorber mode (exciting a single InterDigital Transducer, IDT) to form a pure Travelling Surface Acoustic Wave (TSAW) and to actuate the droplet, where the velocity and direction of the droplet can be adjusted by controlling the on-off and amplitude of the excitation signals applied to a pair of IDTs. Herein, in a way that is different from using the exciter-absorber mode, we propose a method of actuating droplets by using the exciter-exciter mode (exciting a pair of IDTs simultaneously), where the velocity and directional adjustment of the droplet can be realized by changing only one excitation parameter for the signals (the temporal phase shift, θ), and the droplet velocity can also be significantly improved. Specifically, we report for the first time the equation of the vibration of the mixed waves (TSAW and Standing Surface Acoustic Wave (SSAW)) formed on the substrate surface using the exciter-exciter mode. This is analyzed theoretically, where it is shown in this work that the amplitude and direction of the TSAW component of the mixed waves can be adjusted by changing θ. Following that, the velocity and directional adjustment of the droplet has been realized by changing θ and the improvement of the droplet velocity has been verified on a one-dimensional SAW device, using this exciter-exciter mode. Moreover a series of experiments on droplet transportation, along different trajectories in an x-y plane, has been carried out using a two-dimensional SAW device and this has demonstrated the effectiveness of the θ changing-based approach. Here this exciter-exciter mode provides an alternative method for the transportation of droplets in 'lab-on-a-chip' applications.


Subject(s)
Sound , Transducers , Vibration
8.
Sci Rep ; 12(1): 48, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996926

ABSTRACT

The electrical characteristics of quad-crescent-shaped silicon nanowire (NW) solar cells (SCs) are numerically analyzed and as a result their performance optimized. The structure discussed consists of four crescents, forming a cavity that permits multiple light scattering with high trapping between the NWs. Additionally, new modes strongly coupled to the incident light are generated along the NWs. As a result, the optical absorption has been increased over a large portion of light wavelengths and hence the power conversion efficiency (PCE) has been improved. The electron-hole (e-h) generation rate in the design reported has been calculated using the 3D finite difference time domain method. Further, the electrical performance of the SC reported has been investigated through the finite element method, using the Lumerical charge software package. In this investigation, the axial and core-shell junctions were analyzed looking at the reported crescent and, as well, conventional NW designs. Additionally, the doping concentration and NW-junction position were studied in this design proposed, as well as the carrier-recombination-and-lifetime effects. This study has revealed that the high back surface field layer used improves the conversion efficiency by [Formula: see text] 80%. Moreover, conserving the NW radial shell as a low thickness layer can efficiently reduce the NW sidewall recombination effect. The PCE and short circuit current were determined to be equal to 18.5% and 33.8 mA[Formula: see text] for the axial junction proposed. However, the core-shell junction shows figures of 19% and 34.9 mA[Formula: see text]. The suggested crescent design offers an enhancement of 23% compared to the conventional NW, for both junctions. For a practical surface recombination velocity of [Formula: see text] cm/s, the PCE of the proposed design, in the axial junction, has been reduced to 16.6%, with a reduction of 11%. However, the core-shell junction achieves PCE of 18.7%, with a slight reduction of 1.6%. Therefore, the optoelectronic performance of the core-shell junction was marginally affected by the NW surface recombination, compared to the axial junction.

9.
Opt Express ; 29(6): 9532-9543, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33820378

ABSTRACT

The optical attractive force in tapered single-mode fibers (SMFs) is usually uniformly distributed around the tapered section and has been found to be important for trapping and manipulating targeted atoms and nanoparticles. In contrast, a peculiar phenomenon of the evanescent field splitting along the azimuth axis can be experimentally observed by tapering a weakly-coupled MCF into a strongly-coupled MCF to generate supermode interference. Moreover, the supermode interference produces a hexagonally distributed evanescent field and its six vertices give rise to the multiline optical attractive force. For such spectral resonances, the optimum extinction ratio for the transmission dips is given by 47.4 dB, this being determined using an index liquid to cover the tapered MCF. The resonant dips move to a greater extent at longer wavelengths, with the optimum tuning efficiency of 392 nm/RIU for index sensing. The split evanescent fields respectively attract the excited upconversion nanoparticles in the liquid to be linearly aligned and running down the tapered region over the fiber surface, emitting green light with 60° symmetry. The charged nanoparticles were periodically self-organized, with a period of around 1.53 µm. The parallel lines, with 60° rotational symmetry, can be useful for (1) indicating the exact locations of the side-cores or orientations of the tapered MCF; (2) as precision alignment keys for micro-optical manipulation; and (3) enhancing the upconversion light, or for use in lasers, coupling back to the MCF. The split evanescent fields can be promising for developing new evanescent field-based active and passive fiber components with nano-structures.

10.
RSC Adv ; 11(7): 3891, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-35426995

ABSTRACT

[This corrects the article DOI: 10.1039/D0RA07344J.].

11.
Opt Express ; 27(23): 34247-34257, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31878476

ABSTRACT

The influence of the high index ring layer (HIRL) in a tapered fiber Mach-Zehnder interferometer (MZI) on the interference observed, and thus on its potential applications in temperature sensing, has been investigated. The MZI was comprised of a tapered Ring Core Fiber (RCF), spliced between two single mode fibers (SMF). Since part of core mode from the SMF was converted into cladding modes in the RCF, due to the mismatch in the cores between the RCF and SMF, the residual power enters and then propagates along the center of the RCF (silica). The difference in phase between the radiation travelling along these different paths is separated by the HIRL to generate an interference effect. Compared with fiber interferometers based on core and cladding mode interference, the thin fiber HIRL is capable of separating the high order cladding modes and the silica core mode, under grazing incident conditions. Therefore, the optical path difference (OPD) and the sensitivity are both substantially improved over what is seen in conventional devices, showing their potential for interferometric temperature sensor applications. The optimum temperature sensitivity obtained was 186.6 pm/°C, which is ∼ 11.7 times higher than has been reported previously.

12.
Sci Rep ; 9(1): 17469, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31767883

ABSTRACT

Knowledge of the distribution of the aspect ratios (ARs) in a chemically-synthesized colloidal solution of Gold Nano Rods (GNRs) is an important measure in determining the quality of synthesis, and consequently the performance of the GNRs generated for various applications. In this work, an algorithm has been developed based on the Bellman Principle of Optimality to readily determine the AR distribution of synthesized GNRs in colloidal solutions. This is achieved by theoretically fitting the longitudinal plasmon resonance of GNRs obtained by UV-visible spectroscopy. The AR distribution obtained from the use of the algorithm developed have shown good agreement with those theoretically generated one as well as with the previously reported results. After bench-marking, the algorithm has been applied to determine the mean and standard deviation of the AR distribution of two GNRs solutions synthesized and examined in this work. The comparison with experimentally derived results from the use of expensive Transmission Electron Microscopic images and Dynamic Light Scattering technique shows that the algorithm developed offers a fast and thus potentially cost-effective solution to determine the quality of the synthesized GNRs specifically needed for many potential applications for the advanced sensor systems.

13.
Appl Opt ; 58(16): 4306-4314, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31251234

ABSTRACT

Viscoelasticity is an effect seen in a wide range of materials, and it affects the reliability of static measurements made using fiber Bragg grating (FBG)-based sensors, because the target structure, the adhesive used, or the fiber itself could be viscoelastic. The effect of viscoelasticity on FBG-based sensing has been comprehensively researched through theoretical analysis and simulation using a finite-element approach, and a further data processing method to reconstruct the graphical data has been developed. An integrated sensor package comprising an FBG-based sensor in a polymer host and manufactured by using three-dimensional (3D) printing was investigated and examined through tensile testing to validate the approach. The application of the 3D-printed FBG-based sensor package, coupled with the data process method, has been explored to monitor the height of a railway pantograph, a critical measurement requirement to monitor elongation, employing a method that can be used in the presence of electromagnetic interference. The results show that the effect of viscoelasticity can be effectively eliminated, and the graphical system response allows results that are sufficiently precise for field use to be generated.

14.
Sensors (Basel) ; 19(9)2019 May 09.
Article in English | MEDLINE | ID: mdl-31075827

ABSTRACT

The design, development, and evaluation of an optical fibre sensor for the detection of Hg2+ in aqueous media are discussed in detail in this paper. A novel fluorescent polymeric material for Hg2+ detection, based on a coumarin derivative (acting as the fluorophore) and an azathia crown ether moiety (acting as the mercury ion receptor), has been synthesized. The fluorophore was covalently immobilized onto the fibre surface by polymerisation using the ion imprinting technique and exhibited a significant increase in fluorescence intensity in response to Hg2+ via a photoinduced electron transfer (PET) mechanism. The sensor provided a response over a concentration range of 0-28 µM with an acceptable response rate of around 11 min and a recovery rate of around 30 min in a Tris-EDTA buffer solution. A detection limit of 0.15 µM was obtained with a possibility of improvement by changing the thickness of the polymer layer and using a more sensitive detector. High-quality performance is seen through a high selectivity for Hg2+ over other metal ions, excellent photo-stability and reversibility which was also demonstrated, making this type of sensor potentially well suited for in-situ monitoring of mercury in the environment.

15.
Opt Lett ; 44(7): 1876-1879, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933170

ABSTRACT

Taking advantage of the high thermal conductivity of graphene, this Letter demonstrates a microelectromechanical (MEM) tunable Fabry-Pérot (F-P) cavity, based on a graphene-bonded fiber device (GFD), which acts as a microheater. By increasing the electric current from 0 to 8 mA in the heater, the temperature of the GFD can rise and approach a value of 760 K theoretically. This high temperature will cause a deformation of the fiber, allowing the graphene-bonded fiber end to form a gap-adjustable F-P cavity with a cleaved single-mode fiber. The gap in the cavity can be reduced by increasing the current applied, leading the transmittance of the cavity to change. In this work, a highly sensitive current sensor (5.9×105 nm/A2) and a tunable mode-locked fiber laser (1.2×104 nm/A2) are created based on the MEM tunable F-P cavity.

16.
Stud Health Technol Inform ; 210: 567-71, 2015.
Article in English | MEDLINE | ID: mdl-25991212

ABSTRACT

This paper investigates an enhanced WSN based monitoring system for elderly people in geriatric facilities. Apart from general physical monitoring functionalities, we explore the potential of using a wireless audio module to perform mental health monitoring. The telephone version of the mini mental status examination (T-MMSE) was adopted in the mental health monitoring and the RSSI (Received Signal Strength Indicator) localization algorithm was implemented in this system to track elderly people's the real-time location and send alerts based on their inactivity/activity levels, movement history and entry into restricted zones. Experimental test was performed to evaluate the performance of the proposed system. With results obtained and studied, this work can be extended to perform detection and rehabilitation function for elderly people with mental illness. This kind of monitoring system would be expected to make an important impact on many application scenarios for geriatric facilities.


Subject(s)
Computer Communication Networks/instrumentation , Geographic Information Systems/instrumentation , Geriatric Assessment/methods , Health Services for the Aged/organization & administration , Monitoring, Ambulatory/instrumentation , Wireless Technology/instrumentation , Actigraphy/instrumentation , Aged , Aged, 80 and over , Equipment Design , Equipment Failure Analysis , Humans , Male , Remote Sensing Technology/instrumentation , United Kingdom
17.
Appl Opt ; 51(29): 7011-5, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-23052080

ABSTRACT

A stable and tunable thulium-doped "all-fiber" laser offering a narrow linewidth has been created specifically to act as a compact and simple laser source for gaseous CO(2) detection. This has been done through a careful design to match the laser output wavelengths to the CO(2) absorption lines at 1.875 and 1.997 µm, respectively. A sustainable output power of 11 mW over a tuning range of 7 nm has been obtained by using a combination of a high-reflective fiber Bragg grating with a low-reflective broadband mirror, fabricated at the end of the fiber through silver film deposition. The tuning was achieved using the relaxation-compression mechanism of the fiber Bragg grating, which formed an integral part of the laser resonant cavity. A fiber Bragg grating at 1.548 µm was utilized as a wavelength reference to monitor the tuning of the laser output over the 2 µm wavelength range with a simple and inexpensive interrogator, to avoid the use of an expensive optical spectrum analyzer and to facilitate "in-the-field" operation. This "all-fiber" laser resonator has been shown to be superior in terms of laser tuning range, output power, and linewidth compared to that created with a fiber Bragg grating pair, which was limited by the nonuniform strain transfer to both fiber Bragg gratings.

18.
Appl Opt ; 50(35): 6505-11, 2011 Dec 10.
Article in English | MEDLINE | ID: mdl-22193129

ABSTRACT

In this work, it is shown that the differential loss between the TE- and TM-polarized fundamental modes in a highly birefringent photonic crystal fiber (PCF) can be enhanced by bending the fiber. As a result, a design approach for single-mode single-polarization operation has been developed and is discussed. A rigorous full-vectorial H-field-based finite element approach, which includes the conformal transformation and the perfectly matched layer, is used to determine the single-polarization properties of such a highly birefringent PCF by exploiting its differential bending losses.

19.
Appl Opt ; 50(26): 5130-8, 2011 Sep 10.
Article in English | MEDLINE | ID: mdl-21946995

ABSTRACT

Photodiode-array-based spectrometers are increasingly being used in a wide variety of applications. However, the signal measured by this type of instrument often is not what is anticipated by the user and is often subject to contamination from stray light. This paper describes an efficient and low-cost stray light correction approach based on a relatively simple system using a monochromator-based source. The paper further discusses the limitations of using a monochromator instead of a laser, as used by previous researchers, and its impact on the quality of the stray light correction. The reliability and robustness of the stray light correction matrix generated have been studied and are also reported.

20.
Appl Opt ; 50(6): 866-75, 2011 Feb 20.
Article in English | MEDLINE | ID: mdl-21343966

ABSTRACT

Temperature and nonlinearity effects are two important factors that limit the use of photodiode array spectrometers. Usually the spectrometer is calibrated at a known temperature against a reference source of a particular spectral radiance, and then it is used at different temperatures to measure sources of different spectral radiances. These factors are expected to be problematic for nontemperature-stabilized instruments used for in-the-field experiments, where the radiant power of the site changes continuously with the sun tilt. This paper describes the effect of ambient temperature on a nontemperature-stabilized linear photodiode array spectrometer over the temperature range from 5 °C to 40 °C. The nonlinearity effects on both signal amplification and different levels of radiant power have also been studied and are presented in this paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...