Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 24(8): 102870, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34386731

ABSTRACT

Single traumatic events that elicit an exaggerated stress response can lead to the development of neuropsychiatric conditions. Rodent studies suggested germline RNA as a mediator of effects of chronic environmental exposures to the progeny. The effects of an acute paternal stress exposure on the germline and their potential consequences on offspring remain to be seen. We find that acute administration of an agonist for the stress-sensitive Glucocorticoid receptor, using the common corticosteroid dexamethasone, affects the RNA payload of mature sperm as soon as 3 hr after exposure. It further impacts early embryonic transcriptional trajectories, as determined by single-embryo sequencing, and metabolism in the offspring. We show persistent regulation of tRNA fragments in sperm and descendant 2-cell embryos, suggesting transmission from sperm to embryo. Lastly, we unravel environmentally induced alterations in sperm circRNAs and their targets in the early embryo, highlighting this class as an additional candidate in RNA-mediated inheritance of disease risk.

2.
Transgenic Res ; 23(1): 177-85, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24197666

ABSTRACT

We describe here use of a cell-permeable Cre to efficiently convert the EUCOMM/KOMP-CSD tm1a allele to the tm1b form in preimplantation mouse embryos in a high-throughput manner, consistent with the requirements of the International Mouse Phenotyping Consortium-affiliated NIH KOMP2 project. This method results in rapid allele conversion and minimizes the use of experimental animals when compared to conventional Cre transgenic mouse breeding, resulting in a significant reduction in costs and time with increased welfare benefits.


Subject(s)
Embryonic Development/genetics , Integrases/genetics , Alleles , Animals , Breeding , Embryo, Mammalian , Embryonic Stem Cells , Mice , Mice, Transgenic
3.
Am J Physiol Gastrointest Liver Physiol ; 296(4): G923-30, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19164486

ABSTRACT

P2Y receptors have been reported to modulate gastrointestinal functions. The newest family member is the nucleotide-sugar receptor P2Y14. P2ry14 mRNA was detected throughout the rat gut, with the highest level being in the forestomach. We investigated the role of the receptor in stomach motility using cognate agonists and knockout (KO) mice. In rat isolated forestomach, 100 microM UDP-glucose and 100 muM UDP-galactose both increased the baseline muscle tension (BMT) by 6.2+/-0.6 and 1.6+/-0.6 mN (P<0.05, n=3-4), respectively, and the amplitude of contractions during electrical field stimulation (EFS) by 3.7+/-1.7 and 4.3+/-2.5 mN (P<0.05, n=3-4), respectively. In forestomach from wild-type (WT) mice, 100 microM UDP-glucose increased the BMT by 1.0+/-0.1 mN (P<0.05, n=6) but this effect was lost in the KO mice (change of -0.1+/-0.1 mN, n=6). The 100 microM UDP-glucose also increased the contraction amplitude during EFS in this tissue from the WT animals (0.9+/-0.4 mN, P < 0.05, n=6) but not from the KO mice (0.0+/-0.2 mN, n=6). In vivo, UDP-glucose at 2,000 mg/kg ip reduced gastric emptying in rats by 49.7% (P<0.05, n=4-6) and in WT and KO mice by 56.1 and 66.2%, respectively (P<0.05, n=7-10) vs. saline-treated control animals. There was no significant difference in gastric emptying between WT and KO animals receiving either saline or d-glucose. These results demonstrate a novel function of the P2Y14 receptor associated with contractility in the rodent stomach that does not lead to altered gastric emptying after receptor deletion and an ability of UDP-glucose to delay gastric emptying without involving the P2Y14 receptor.


Subject(s)
Gastric Emptying/drug effects , Receptors, Purinergic P2/metabolism , Uridine Diphosphate Glucose/pharmacology , Animals , Dose-Response Relationship, Drug , Gene Expression Regulation/physiology , Lac Operon/genetics , Lac Operon/physiology , Mice , Mice, Knockout , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2Y , Uridine Diphosphate Galactose/pharmacology
4.
J Biol Chem ; 283(52): 36665-75, 2008 Dec 26.
Article in English | MEDLINE | ID: mdl-18854306

ABSTRACT

During anemia erythropoiesis is bolstered by several factors including KIT ligand, oncostatin-M, glucocorticoids, and erythropoietin. Less is understood concerning factors that limit this process. Experiments performed using dual-specificity tyrosine-regulated kinase-3 (DYRK3) knock-out and transgenic mice reveal that erythropoiesis is attenuated selectively during anemia. DYRK3 is restricted to erythroid progenitor cells and testes. DYRK3-/- mice exhibited essentially normal hematological profiles at steady state and reproduced normally. In response to hemolytic anemia, however, reticulocyte production increased severalfold due to DYRK3 deficiency. During 5-fluorouracil-induced anemia, both reticulocyte and red cell formation in DYRK3-/- mice were elevated. In short term transplant experiments, DYRK3-/- progenitors also supported enhanced erythroblast formation, and erythropoietic advantages due to DYRK3-deficiency also were observed in 5-fluorouracil-treated mice expressing a compromised erythropoietin receptor EPOR-HM allele. As analyzed ex vivo, DYRK3-/- erythroblasts exhibited enhanced CD71posTer119pos cell formation and 3HdT incorporation. Transgenic pA2gata1-DYRK3 mice, in contrast, produced fewer reticulocytes during hemolytic anemia, and pA2gata1-DYRK3 progenitors were compromised in late pro-erythroblast formation ex vivo. Finally, as studied in erythroid K562 cells, DYRK3 proved to effectively inhibit NFAT (nuclear factor of activated T cells) transcriptional response pathways and to co-immunoprecipitate with NFATc3. Findings indicate that DYRK3 attenuates (and possibly apportions) red cell production selectively during anemia.


Subject(s)
Erythropoiesis , Protein Serine-Threonine Kinases/physiology , Protein-Tyrosine Kinases/physiology , Alleles , Anemia/metabolism , Animals , Antigens, CD/metabolism , Bone Marrow Transplantation , Cell Line , Fluorouracil/pharmacology , Humans , K562 Cells , Mice , Mice, Knockout , Mice, Transgenic , Receptors, Transferrin/metabolism , Transgenes
5.
Mol Cell Biol ; 24(22): 9848-62, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15509788

ABSTRACT

The serine protease HtrA2/Omi is released from the mitochondrial intermembrane space following apoptotic stimuli. Once in the cytosol, HtrA2/Omi has been implicated in promoting cell death by binding to inhibitor of apoptosis proteins (IAPs) via its amino-terminal Reaper-related motif, thus inducing caspase activity, and also in mediating caspase-independent death through its own protease activity. We report here the phenotype of mice entirely lacking expression of HtrA2/Omi due to targeted deletion of its gene, Prss25. These animals, or cells derived from them, show no evidence of reduced rates of cell death but on the contrary suffer loss of a population of neurons in the striatum, resulting in a neurodegenerative disorder with a parkinsonian phenotype that leads to death of the mice around 30 days after birth. The phenotype of these mice suggests that it is the protease function of this protein and not its IAP binding motif that is critical. This conclusion is reinforced by the finding that simultaneous deletion of the other major IAP binding protein, Smac/DIABLO, does not obviously alter the phenotype of HtrA2/Omi knockout mice or cells derived from them. Mammalian HtrA2/Omi is therefore likely to function in vivo in a manner similar to that of its bacterial homologues DegS and DegP, which are involved in protection against cell stress, and not like the proapoptotic Reaper family proteins in Drosophila melanogaster.


Subject(s)
Corpus Striatum/embryology , Corpus Striatum/enzymology , Serine Endopeptidases/physiology , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins , Base Sequence , Carrier Proteins/genetics , Carrier Proteins/physiology , Corpus Striatum/abnormalities , DNA/genetics , Female , Gene Targeting , High-Temperature Requirement A Serine Peptidase 2 , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Mitochondrial Proteins/physiology , Neurons/pathology , Parkinsonian Disorders/embryology , Parkinsonian Disorders/etiology , Parkinsonian Disorders/genetics , Phenotype , Pregnancy , Proteins/metabolism , Serine Endopeptidases/deficiency , Serine Endopeptidases/genetics , X-Linked Inhibitor of Apoptosis Protein
6.
Mol Cell Neurosci ; 24(3): 646-55, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14664815

ABSTRACT

BACE1 is a key enzyme in the generation of Abeta, the major component of senile plaques in the brains of Alzheimer's disease patients. We have generated transgenic mice expressing human BACE1 with the Cam Kinase II promoter driving neuronal-specific expression. The transgene contains the full-length coding sequence of human BACE1 preceding an internal ribosome entry site element followed by a LacZ reporter gene. These animals exhibit a bold, exploratory behavior and show elevated 5-hydroxytryptamine turnover. We have also generated a knockout mouse in which LacZ replaces the first exon of murine BACE1. Interestingly these animals show a contrasting behavior, being timid and less exploratory. Despite these clear differences both mouse lines are viable and fertile with no changes in morbidity. These results suggest an unexpected role for BACE1 in neurotransmission, perhaps through changes in amyloid precursor protein processing and Abeta levels.


Subject(s)
Aspartic Acid Endopeptidases/deficiency , Behavior, Animal/physiology , Brain/enzymology , Serotonin/metabolism , Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides/biosynthesis , Animals , Aspartic Acid Endopeptidases/genetics , Brain/physiopathology , Cells, Cultured , Disease Models, Animal , Endopeptidases , Exploratory Behavior/physiology , Fear/physiology , Genes, Reporter/genetics , Mice , Mice, Knockout , Mice, Transgenic , Phenotype , Synaptic Transmission/genetics , Transgenes/genetics
7.
Br J Pharmacol ; 139(2): 464-72, 2003 May.
Article in English | MEDLINE | ID: mdl-12770952

ABSTRACT

1 Urotensin-II (U-II) is among the most potent mammalian vasoconstrictors identified and may play a role in the aetiology of essential hypertension. Currently, only one mouse U-II receptor (UT) gene has been cloned. It is postulated that this protein is solely responsible for mediating U-II-induced vasoconstriction. 2 This hypothesis has been investigated in the present study, which assessed basal haemodynamics and vascular reactivity to hU-II in wild-type (UT((+/+))) and UT receptor knockout (UT((-/-))) mice. 3 Basal left ventricular end-diastolic and end-systolic volumes/pressures, stroke volumes, mean arterial blood pressures, heart rates, cardiac outputs and ejection fractions in UT((+/+)) mice and in UT((-/-)) mice were similar. 4 Relative to UT((+/+)) mouse isolated thoracic aorta, where hU-II was a potent spasmogen (pEC(50)=8.26+/-0.08) that evoked relatively little vasoconstriction (17+/-2% 60 mM KCl), vessels isolated from UT((-/-)) mice did not respond to hU-II. However, in contrast, the superior mesenteric artery isolated from both the genotypes did not contract in the presence of hU-II. Reactivity to unrelated vasoconstrictors (phenylephrine, endothelin-1, KCl) and endothelium-dependent/independent vasodilator agents (carbachol, sodium nitroprusside) was similar in the aorta and superior mesenteric arteries isolated from both the genotypes. 5 The present study is the first to directly link hU-II-induced vasoconstriction with the UT receptor. Deletion of the UT receptor gene results in loss of hU-II contractile action with no 'nonspecific' alterations in vascular reactivity. However, as might be predicted based on the limited contractile efficacy recorded in vitro, the contribution that hU-II and its receptor make to basal systemic haemodynamics appears to be negligible in this species.


Subject(s)
Muscle, Smooth, Vascular/physiology , Receptors, G-Protein-Coupled/genetics , Urotensins/metabolism , Vasoconstriction/physiology , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , Body Weight , Gene Targeting , Genotype , Hemodynamics , Humans , In Vitro Techniques , Male , Mesenteric Artery, Superior/drug effects , Mesenteric Artery, Superior/physiology , Mice , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Receptors, G-Protein-Coupled/metabolism , Urotensins/pharmacology , Urotensins/physiology , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
8.
Cardiovasc Res ; 54(3): 549-58, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12031700

ABSTRACT

OBJECTIVE: Matrix metalloproteinase-9 (MMP-9) activity is up regulated in the heart subjected to ischemic insult. Whether increased MMP-9 activity contributes to acute myocardial injury after ischemia-reperfusion remains unknown. To investigate the role of MMP-9 in myocardial infarction, we utilized a MMP-9 knockout mouse. METHODS AND RESULTS: Standard homologous recombination in embryonic stem cells was used to generate a mouse lacking MMP-9. The left anterior descending coronary artery was occluded for 30 min followed by 24 h reperfusion, and the ischemic and infarct sizes were determined. Targeted deletion of MMP-9 protected the heart from no-flow ischemia-reperfusion-induced myocardial injury. The myocardial infarct size was reduced by 17.5% in MMP-9 heterozygotes (+/-) (P<0.01) and 35.4% in MMP-9 knockout (-/-) mice (P<0.01) versus the wild-type (+/+) mice, respectively. Analysis of MMP activity in myocardial extracts by zymography demonstrated that ischemia-reperfusion-induced expression of proMMP-9 and active MMP-9 was reduced by 77.8% (P<0.01) and 69.1% (P<0.001), respectively, in (+/-) mice compared to (+/+) mice, and was absent in (-/-) animals. The expression of TIMP-1, an endogenous inhibitor of MMP-9, was elevated 4.7-fold (P<0.05) and 21.4-fold (P<0.05) in the (+/-) and (-/-) mice, respectively, compared to (+/+) mice. Immunohistochemical analysis revealed that neutrophils were the primary cellular source of MMP-9, and less neutrophils were detected in the ischemic region of the heart following ischemia-reperfusion in (-/-) mice compared to (+/+) mice. Measurement of myeloperoxidase activity, a marker enzyme of neutrophils, demonstrated a 44% reduction in neutrophils infiltrated into the ischemic myocardium in the (-/-) mice compared to the (+/+) mice (P<0.05). CONCLUSION: These results suggest that MMP-9 plays an important role in ischemia-reperfusion-induced myocardial infarction and MMP-9 could be a target for prevention or treatment of acute ischemic myocardial injury.


Subject(s)
Gene Deletion , Matrix Metalloproteinase 9/genetics , Myocardial Reperfusion Injury/enzymology , Myocardium/enzymology , Animals , Immunohistochemistry/methods , Matrix Metalloproteinase 2/analysis , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/analysis , Mice , Mice, Knockout , Models, Animal , Myocardial Reperfusion Injury/genetics , Myocardium/immunology , Neutrophil Infiltration , Neutrophils/enzymology , Tissue Inhibitor of Metalloproteinase-1/analysis , Tissue Inhibitor of Metalloproteinase-1/metabolism , Ventricular Remodeling
9.
J Biol Chem ; 277(4): 2773-8, 2002 Jan 25.
Article in English | MEDLINE | ID: mdl-11707458

ABSTRACT

The ability of native uncoupling protein-3 (UCP3) to uncouple mitochondrial oxidative phosphorylation is controversial. We measured the expression level of UCP3 and the proton conductance of skeletal muscle mitochondria isolated from transgenic mice overexpressing human UCP3 (UCP3-tg) and from UCP3 knockout (UCP3-KO) mice. The concentration of UCP3 in UCP3-tg mitochondria was approximately 3 microg/mg protein, approximately 20-fold higher than the wild type value. UCP3-tg mitochondria had increased nonphosphorylating respiration rates, decreased respiratory control, and approximately 4-fold increased proton conductance compared with the wild type. However, this increased uncoupling in UCP3-tg mitochondria was not caused by native function of UCP3 because it was not proportional to the increase in UCP3 concentration and was neither activated by superoxide nor inhibited by GDP. UCP3 was undetectable in mitochondria from UCP3-KO mice. Nevertheless, UCP3-KO mitochondria had unchanged respiration rates, respiratory control ratios, and proton conductance compared with the wild type under a variety of assay conditions. We conclude that uncoupling in UCP3-tg mice is an artifact of transgenic expression, and that UCP3 does not catalyze the basal proton conductance of skeletal muscle mitochondria in the absence of activators such as superoxide.


Subject(s)
Carrier Proteins/biosynthesis , Carrier Proteins/genetics , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Protons , Animals , Blotting, Western , Body Weight , Humans , Ion Channels , Kinetics , Mice , Mice, Knockout , Mice, Transgenic , Mitochondrial Proteins , Oxygen/metabolism , Oxygen Consumption , Phosphorylation , Protein Binding , Succinic Acid/metabolism , Superoxides/metabolism , Uncoupling Protein 3
SELECTION OF CITATIONS
SEARCH DETAIL
...