Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 178(17): 3463-3475, 2021 09.
Article in English | MEDLINE | ID: mdl-33864386

ABSTRACT

BACKGROUND AND PURPOSE: Reduced bioavailability of NO, a hallmark of sickle cell disease (SCD), contributes to intravascular inflammation, vasoconstriction, vaso-occlusion and organ damage observed in SCD patients. Soluble guanylyl cyclase (sGC) catalyses synthesis of cGMP in response to NO. cGMP-amplifying agents, including NO donors and phosphodiesterase 9 inhibitors, alleviate TNFα-induced inflammation in wild-type C57BL/6 mice and in 'humanised' mouse models of SCD. EXPERIMENTAL APPROACH: Effects of the sGC stimulator olinciguat on intravascular inflammation and renal injury were studied in acute (C57BL6 and Berkeley mice) and chronic (Townes mice) mouse models of TNFα-induced and systemic inflammation associated with SCD. KEY RESULTS: Acute treatment with olinciguat attenuated increases in plasma biomarkers of endothelial cell activation and leukocyte-endothelial cell interactions in TNFα-challenged mice. Co-treatment with hydroxyurea, an FDA-approved SCD therapeutic agent, further augmented the anti-inflammatory effect of olinciguat. In the Berkeley mouse model of TNFα-induced vaso-occlusive crisis, a single dose of olinciguat attenuated leukocyte-endothelial cell interactions, improved blood flow and prolonged survival time compared to vehicle-treated mice. In Townes SCD mice, plasma biomarkers of inflammation and endothelial cell activation were lower in olinciguat- than in vehicle-treated mice. In addition, kidney mass, water consumption, 24-h urine excretion, plasma levels of cystatin C and urinary excretion of N-acetyl-ß-d-glucosaminidase and neutrophil gelatinase-associated lipocalin were lower in Townes mice treated with olinciguat than in vehicle-treated mice. CONCLUSION AND IMPLICATIONS: Our results suggest that the sGC stimulator olinciguat attenuates inflammation, vaso-occlusion and kidney injury in mouse models of SCD and systemic inflammation.


Subject(s)
Anemia, Sickle Cell , Vascular Diseases , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/drug therapy , Animals , Humans , Inflammation , Mice , Mice, Inbred C57BL , Soluble Guanylyl Cyclase
SELECTION OF CITATIONS
SEARCH DETAIL
...