Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Manage ; 50(3): 341-51, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22773068

ABSTRACT

As natural resource management agencies and conservation organizations seek guidance on responding to climate change, myriad potential actions and strategies have been proposed for increasing the long-term viability of some attributes of natural systems. Managers need practical tools for selecting among these actions and strategies to develop a tailored management approach for specific targets at a given location. We developed and present one such tool, the participatory Adaptation for Conservation Targets (ACT) framework, which considers the effects of climate change in the development of management actions for particular species, ecosystems and ecological functions. Our framework is based on the premise that effective adaptation of management to climate change can rely on local knowledge of an ecosystem and does not necessarily require detailed projections of climate change or its effects. We illustrate the ACT framework by applying it to an ecological function in the Greater Yellowstone Ecosystem (Montana, Wyoming, and Idaho, USA)--water flows in the upper Yellowstone River. We suggest that the ACT framework is a practical tool for initiating adaptation planning, and for generating and communicating specific management interventions given an increasingly altered, yet uncertain, climate.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Forecasting , Goals , Rivers , United States , Water Supply
2.
Science ; 333(6040): 332-5, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21659569

ABSTRACT

In western North America, snowpack has declined in recent decades, and further losses are projected through the 21st century. Here, we evaluate the uniqueness of recent declines using snowpack reconstructions from 66 tree-ring chronologies in key runoff-generating areas of the Colorado, Columbia, and Missouri River drainages. Over the past millennium, late 20th century snowpack reductions are almost unprecedented in magnitude across the northern Rocky Mountains and in their north-south synchrony across the cordillera. Both the snowpack declines and their synchrony result from unparalleled springtime warming that is due to positive reinforcement of the anthropogenic warming by decadal variability. The increasing role of warming on large-scale snowpack variability and trends foreshadows fundamental impacts on streamflow and water supplies across the western United States.

3.
Ambio ; 40(3): 256-63, 2011 May.
Article in English | MEDLINE | ID: mdl-21644454

ABSTRACT

Assessments of adaptation options generally focus on incremental, homogeneous ecosystem responses to climate even though climate change impacts can be big, fast, and patchy across a region. Regional drought-induced tree die-off in semiarid woodlands highlights how an ecosystem crash fundamentally alters most ecosystem services and poses management challenges. Building on previous research showing how choice of location is linked to adaptive capacity and vulnerability, we developed a framework showing how the options for retaining desired ecosystem services in the face of sudden crashes depend on how portable the service is and whether the stakeholder is flexible with regard to the location where they receive their services. Stakeholders using portable services, or stakeholders who can move to other locations to obtain services, may be more resilient to ecosystem crashes. Our framework suggests that entering into cooperative networks with regionally distributed stakeholders is key to building resilience to big, fast, patchy crashes.


Subject(s)
Climate Change , Ecosystem , Adaptation, Physiological , Animals , Droughts
4.
Environ Manage ; 47(3): 322-37, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21259061

ABSTRACT

Assessing the impact of climate change on species and associated management objectives is a critical initial step for engaging in the adaptation planning process. Multiple approaches are available. While all possess limitations to their application associated with the uncertainties inherent in the data and models that inform their results, conducting and incorporating impact assessments into the adaptation planning process at least provides some basis for making resource management decisions that are becoming inevitable in the face of rapidly changing climate. Here we provide a non-exhaustive review of long-standing (e.g., species distribution models) and newly developed (e.g., vulnerability indices) methods used to anticipate the response to climate change of individual species as a guide for managers grappling with how to begin the climate change adaptation process. We address the limitations (e.g., uncertainties in climate change projections) associated with these methods, and other considerations for matching appropriate assessment approaches with the management questions and goals. Thorough consideration of the objectives, scope, scale, time frame and available resources for a climate impact assessment allows for informed method selection. With many data sets and tools available on-line, the capacity to undertake and/or benefit from existing species impact assessments is accessible to those engaged in resource management. With some understanding of potential impacts, even if limited, adaptation planning begins to move toward the development of management strategies and targeted actions that may help to sustain functioning ecosystems and their associated services into the future.


Subject(s)
Climate Change/statistics & numerical data , Conservation of Natural Resources/methods , Environment , Adaptation, Psychological , Animals , Biodiversity , Humans , Models, Theoretical , Planning Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...