Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37763922

ABSTRACT

We report here the successful shape-controlled synthesis of dielectric spinel-type ZnCr2O4 nanoparticles by using a simple sol-gel auto-combustion method followed by successive heat treatment steps of the resulting powders at temperatures from 500 to 900 °C and from 5 to 11 h, in air. A systematic study of the dependence of the morphology of the nanoparticles on the annealing time and temperature was performed by using field effect scanning electron microscopy (FE-SEM), powder X-ray diffraction (PXRD) and structure refinement by the Rietveld method, dynamic lattice analysis and broadband dielectric spectrometry, respectively. It was observed for the first time that when the aerobic post-synthesis heat treatment temperature increases progressively from 500 to 900 °C, the ZnCr2O4 nanoparticles: (i) increase in size from 10 to 350 nm and (ii) develop well-defined facets, changing their shape from shapeless to truncated octahedrons and eventually pseudo-octahedra. The samples were found to exhibit high dielectric constant values and low dielectric losses with the best dielectric performance characteristics displayed by the 350 nm pseudo-octahedral nanoparticles whose permittivity reaches a value of ε = 1500 and a dielectric loss tan δ = 5 × 10-4 at a frequency of 1 Hz. Nanoparticulate ZnCr2O4-based thin films with a thickness varying from 0.5 to 2 µm were fabricated by the drop-casting method and subsequently incorporated into planar capacitors whose dielectric performance was characterized. This study undoubtedly shows that the dielectric properties of nanostructured zinc chromite powders can be engineered by the rational control of their morphology upon the variation of the post-synthesis heat treatment process.

2.
Sensors (Basel) ; 23(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36904890

ABSTRACT

The growing number of cyber-crimes is affecting all industries worldwide, as there is no business or industry that has maximum protection in this domain. This problem can produce minimal damage if an organization has information security audits periodically. The process of an audit includes several steps, such as penetration testing, vulnerability scans, and network assessments. After the audit is conducted, a report that contains the vulnerabilities is generated to help the organization to understand the current situation from this perspective. Risk exposure should be as low as possible because in cases of an attack, the entire business is damaged. In this article, we present the process of an in-depth security audit on a distributed firewall, with different approaches for the best results. The research of our distributed firewall involves the detection and remediation of system vulnerabilities by various means. In our research, we aim to solve the weaknesses that have not been solved to date. The feedback of our study is revealed with the help of a risk report in the scope of providing a top-level view of the security of a distributed firewall. To provide a high security level for the distributed firewall, we will address the security flaws uncovered in firewalls as part of our research.

3.
Sensors (Basel) ; 21(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34960460

ABSTRACT

This paper proposes a solution for the development of microclimate monitoring for Low Voltage/High Voltage switchgear using the PRTG Internet of Things (IoT) platform. This IoT-based real time monitoring system can enable predictive maintenance to reduce the risk of electrical station malfunctions due to unfavorable environmental conditions. The combination of humidity and dust can lead to unplanned electrical discharges along the isolators inside a low or medium voltage electric table. If no predictive measures are taken, the situation may deteriorate and lead to significant damage inside and outside the switchgear cell. Thus, the mentioned situation can lead to unprogrammed maintenance interventions that can conduct to the change of the entire affected switchgear cell. Using a low-cost and efficient system, the climate conditions inside and outside the switchgear are monitored and transmitted remotely to a monitoring center. From the results obtained using a 365-day time interval, we can conclude that the proposed system is integrated successfully in the switchgear maintaining process, having as result the reduction of maintenance costs.


Subject(s)
Internet of Things , Microclimate , Monitoring, Physiologic
4.
J Phys Chem Lett ; 10(23): 7391-7396, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31714791

ABSTRACT

We use broad-band dielectric spectroscopy to investigate the spin-state dependence of electrical properties of the [Fe(Htrz)2(trz)](BF4) spin crossover complex. We show that the Havriliak-Negami theory can fully describe the variation of the complex dielectric permittivity of the material across the pressure-temperature phase diagram. The analysis reveals three dielectric relaxation processes, which we attribute to electrode/interface polarization, dipole relaxation, and charge transport relaxation. The contribution of the latter appears significant to the dielectric strength. Remarkably, the permittivity and conductivity changes between the high spin and low spin states are amplified at the corresponding relaxation frequencies.

SELECTION OF CITATIONS
SEARCH DETAIL
...