Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neuro Oncol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982561

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-ß). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-ß-mediated immune suppression in the TME. METHODS: We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-ß, which programs tumor-specific T cells to convert TGF-ß from an immunosuppressant to an immunostimulant. Bispecific IL-13Rα2/TGF-ß CAR-T cells were evaluated for efficacy and safety against both patient-derived GBM xenografts and syngeneic models of murine glioma. RESULTS: Treatment with IL-13Rα2/TGF-ß CAR-T cells leads to greater T-cell infiltration and reduced suppressive myeloid cell presence in the tumor-bearing brain compared to treatment with conventional IL-13Rα2 CAR-T cells, resulting in improved survival in both patient-derived GBM xenografts and syngeneic models of murine glioma. CONCLUSION: Our findings demonstrate that by reprogramming tumor-specific T-cell responses to TGF-ß, bispecific IL-13Rα2/TGF-ß CAR-T cells resist and remodel the immunosuppressive TME to drive potent anti-tumor responses in GBM.

2.
J Vis Exp ; (196)2023 06 23.
Article in English | MEDLINE | ID: mdl-37427920

ABSTRACT

Tumor models are critical for the preclinical testing of brain tumors in terms of exploring new, more efficacious treatments. With significant interest in immunotherapy, it is even more critical to have a consistent, clinically pertinent, immunocompetent mouse model to examine the tumor and immune cell populations in the brain and their response to treatment. While most preclinical models utilize orthotopic transplantation of established tumor cell lines, the modeling system presented here allows for a "personalized" representation of patient-specific tumor mutations in a gradual, yet effective development from DNA constructs inserted into dividing neural precursor cells (NPCs) in vivo. DNA constructs feature the mosaic analysis with the dual-recombinase-mediated cassette exchange (MADR) method, allowing for single-copy, somatic mutagenesis of driver mutations. Using newborn mouse pups between birth and 3 days old, NPCs are targeted by taking advantage of these dividing cells lining the lateral ventricles. Microinjection of DNA plasmids (e.g., MADR-derived, transposons, CRISPR-directed sgRNA) into the ventricles is followed by electroporation using paddles that surround the rostral region of the head. Upon electrical stimulation, the DNA is taken up into the dividing cells, with the potential of integrating into the genome. The use of this method has successfully been demonstrated in developing both pediatric and adult brain tumors, including the most common malignant brain tumor, glioblastoma. This article discusses and demonstrates the different steps of developing a brain tumor model using this technique, including the procedure of anesthetizing young mouse pups, to microinjection of the plasmid mix, followed by electroporation. With this autochthonous, immunocompetent mouse model, researchers will have the ability to expand preclinical modeling approaches, in efforts to improve and examine efficacious cancer treatment.


Subject(s)
Brain Neoplasms , Neural Stem Cells , Mice , Animals , Neural Stem Cells/metabolism , RNA, Guide, CRISPR-Cas Systems , Electroporation/methods , Plasmids/genetics , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Brain Neoplasms/metabolism , DNA/genetics , Mutation
3.
Front Oncol ; 13: 1129533, 2023.
Article in English | MEDLINE | ID: mdl-37213306

ABSTRACT

Medulloblastoma is a tumor of the cerebellum that metastasizes to the leptomeninges of the central nervous system (CNS), including to forebrain and to spinal cord. The inhibitory effect of polynitroxylated albumin (PNA), a caged nitroxide nanoparticle, on leptomeningeal dissemination and metastatic tumor growth was studied in a Sonic Hedgehog transgenic mouse model. PNA treated mice showed an increased lifespan with a mean survival of 95 days (n = 6, P<0.05) compared with 71 days in controls. In primary tumors, proliferation was significantly reduced and differentiation was significantly increased (P<0.001) as shown by Ki-67+ and NeuN+ immunohistochemistry, while cells in spinal cord tumors appeared unaffected. Yet, histochemical analysis of metastatic tumor in spinal cord showed that the mean total number of cells in spinal cord was significantly reduced in mice treated with PNA compared to albumin vehicle (P<0.05). Examination of various levels of the spinal cord showed that PNA treated mice had significantly reduced metastatic cell density in the thoracic, lumbar and sacral spinal cord levels (P<0.05), while cell density in the cervical region was not significantly changed. The mechanism by which PNA may exert these effects on CNS tumors is discussed.

4.
Cancer Res ; 77(14): 3766-3777, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28490517

ABSTRACT

Medulloblastoma arising from the cerebellum is the most common pediatric brain malignancy, with leptomeningeal metastases often present at diagnosis and recurrence associated with poor clinical outcome. In this study, we used mouse medulloblastoma models to explore the relationship of tumor pathophysiology and dysregulated expression of the NOTCH pathway transcription factor ATOH1, which is present in aggressive medulloblastoma subtypes driven by aberrant Sonic Hedgehog/Patched (SHH/PTCH) signaling. In experiments with conditional ATOH1 mouse mutants crossed to Ptch1+/- mice, which develop SHH-driven medulloblastoma, animals with Atoh1 transgene expression developed highly penetrant medulloblastoma at a young age with extensive leptomeningeal disease and metastasis to the spinal cord and brain, resembling xenografts of human SHH medulloblastoma. Metastatic tumors retained abnormal SHH signaling like tumor xenografts. Conversely, ATOH1 expression was detected consistently in recurrent and metastatic SHH medulloblastoma. Chromatin immunoprecipitation sequencing and gene expression profiling identified candidate ATOH1 targets in tumor cells involved in development and tumorigenesis. Among these targets specific to metastatic tumors, there was an enrichment in those implicated in extracellular matrix remodeling activity, cytoskeletal network and interaction with microenvironment, indicating a shift in transcriptomic and epigenomic landscapes during metastasis. Treatment with bone morphogenetic protein or SHH pathway inhibitors decreased tumor cell proliferation and suppressed metastatic tumor growth, respectively. Our work reveals a dynamic ATOH1-driven molecular cascade underlying medulloblastoma metastasis that offers possible therapeutic opportunities. Cancer Res; 77(14); 3766-77. ©2017 AACR.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Cerebellar Neoplasms/metabolism , Medulloblastoma/metabolism , Medulloblastoma/pathology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Hedgehog Proteins , Heterografts , Humans , Medulloblastoma/genetics , Mice , Mice, Transgenic , Neoplasm Metastasis , Signal Transduction
5.
Nat Cell Biol ; 18(4): 418-30, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26999738

ABSTRACT

Aberrant Notch signalling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly paediatric brain neoplasms. We developed animal models of CP tumours, by inducing sustained expression of Notch1, that recapitulate properties of human CP tumours with aberrant NOTCH signalling. Whole-transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate differentiation. A Shh-driven signalling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from monociliated progenitors in the roof plate characterized by elevated Notch signalling. Abnormal SHH signalling and distinct ciliogenesis are detected in human CP tumours, suggesting the SHH pathway and cilia differentiation as potential therapeutic avenues.


Subject(s)
Cell Proliferation/genetics , Choroid Plexus Neoplasms/genetics , Hedgehog Proteins/genetics , Receptor, Notch1/genetics , Animals , Blotting, Western , Choroid Plexus/metabolism , Choroid Plexus/pathology , Choroid Plexus/ultrastructure , Choroid Plexus Neoplasms/metabolism , Choroid Plexus Neoplasms/pathology , Cilia/metabolism , Cilia/ultrastructure , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/metabolism , Humans , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Microscopy, Electron, Transmission , Oligonucleotide Array Sequence Analysis , Receptor, Notch1/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Tumor Cells, Cultured , Tumor Microenvironment/genetics
6.
Biol Psychiatry ; 63(3): 309-16, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17884021

ABSTRACT

BACKGROUND: Methylphenidate (MPH) is prescribed for the treatment of attention-deficit/hyperactivity disorder. Exposure to MPH before adulthood causes behavioral deficits later in life, including anxiety- and depression-like behaviors and decreased responding to natural and drug rewards. We examined the ability of fluoxetine (FLX), a selective serotonin reuptake blocker, to normalize these MPH-induced behavioral deficits. METHODS: Male rats received MPH (2.0 mg/kg) or saline (VEH) during preadolescence (postnatal day [PD] 20-35). When adults, rats were divided into groups receiving no treatment, acute or chronic FLX, and behavioral reactivity to several emotion-eliciting stimuli were assessed. RESULTS: The MPH-treated rats were significantly less responsive to natural (i.e., sucrose) and drug (i.e., morphine) rewards and more sensitive to stress- and anxiety-eliciting situations. These MPH-induced deficits were reversed by exposure to FLX. CONCLUSIONS: These results indicate that exposure to MPH during preadolescence leads to behavioral alterations that endure into adulthood and that these behavioral deficits can be normalized by antidepressant treatment. These results highlight the need for further research to better understand the effects of stimulants on the developing nervous system and the potential enduring effects resulting from early-life drug exposure.


Subject(s)
Antidepressive Agents/therapeutic use , Behavior, Animal/drug effects , Fluoxetine/therapeutic use , Mental Disorders/chemically induced , Mental Disorders/drug therapy , Methylphenidate , Analysis of Variance , Animals , Animals, Newborn , Conditioning, Operant/drug effects , Food Preferences/drug effects , Male , Maze Learning/drug effects , Rats , Rats, Sprague-Dawley , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...