Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1264458, 2023.
Article in English | MEDLINE | ID: mdl-37885659

ABSTRACT

Common bunt caused by Tilletia tritici and T. laevis has re-emerged as a major threat to wheat yield and quality, especially in organic farming. Resistance against its causal agents is present in the wheat gene pool and provides the most economically efficient and sustainable way to combat the disease since seed treatments approved for organic farming are rare and do not always provide full protection. We tested a winter wheat diversity panel with 128 lines for common bunt resistance in Austria and Czechia, and evaluated the applicability of marker-assisted selection (MAS) via Kompetitive Allele-Specific PCR markers in genotypes with high variation in their genetic background. Field trials were conducted across two years and artificially inoculated with local bunt populations. The virulence patterns of these inocula differed between locations and only 15% of the tested genotypes showed stable resistance across test sites. Number and weight of bunt sori relative to the total number and weight of wheat grains in sampled ears revealed that partial infections of ears were frequently appearing. Forty-two breeding lines harboring combinations of four different resistance QTL were developed through MAS. Out of these, a quarter were resistant with a maximum of 5% common bunt incidence. On the other hand, only six out of 46 tested commercial cultivars and breeding lines showed no infection with common bunt, underlining the present scarcity of bunt-resistant cultivars for organic wheat production. By this study we showed that MAS is a useful tool to speed up the selection of resistant lines even in populations with highly diverse genetic backgrounds, and that it is efficient in pyramiding resistance loci and thereby improving the level of resistance.

2.
Theor Appl Genet ; 136(9): 207, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37679535

ABSTRACT

KEY MESSAGE: A major QTL on chromosome 6DL corresponding to bunt resistance gene Bt11 was identified in four mapping populations generated through crosses with Bt11-carriers PI 166910 and M822123. Common bunt in wheat has witnessed a renaissance with the rise of organic agriculture that began in the 1980s. The abandonment of systemic fungicides in organic farming, together with a lack of resistant cultivars, has led to wide-spread problems due to common bunt infections. Knowledge about genetic sources for resistance is still scarce and only few of the known bunt resistance factors are currently used in breeding. We therefore aimed to map the resistance factor harboured by the Turkish landrace PI 166910, which is the resistance donor for the Bt11 bunt differential line. Four mapping populations (MPs) with 96-132 recombinant inbred lines (RILs) were phenotyped for common bunt resistance over 2, 3 or 4 years with one or two local bunt populations and genotyped with the 25K SNP array. A major bunt resistance locus on the distal end of chromosome 6D designated QBt.ifa-6DL was identified in all MPs and experiments. Additional QTL contributing to resistance were detected on chromosomes 4B, 1A, 1B, 2A and 7B. QBt.ifa-6DL mapped to a region overlapping with the Bt9-locus identified in previous studies, but results indicate that QBt.ifa-6DL is different from Bt9 and convincing evidence from haplotype comparisons suggests that it represents the Bt11 resistance allele. Markers for the distal region of chromosome 6D between 492.6 and 495.2 Mbp can be used to select for QBt.ifa-6DL. This resistance factor confers high and stable resistance against common bunt and should be integrated into organic and low-input wheat breeding programs.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Alleles , Genotype , Chromosomes
3.
Front Nutr ; 10: 1230043, 2023.
Article in English | MEDLINE | ID: mdl-37545587

ABSTRACT

During the last decade, scientific interest in and consumer attention to sourdough fermentation in bread making has increased. On the one hand, this technology may favorably impact product quality, including flavor and shelf-life of bakery products; on the other hand, some cereal components, especially in wheat and rye, which are known to cause adverse reactions in a small subset of the population, can be partially modified or degraded. The latter potentially reduces their harmful effects, but depends strongly on the composition of sourdough microbiota, processing conditions and the resulting acidification. Tolerability, nutritional composition, potential health effects and consumer acceptance of sourdough bread are often suggested to be superior compared to yeast-leavened bread. However, the advantages of sourdough fermentation claimed in many publications rely mostly on data from chemical and in vitro analyzes, which raises questions about the actual impact on human nutrition. This review focuses on grain components, which may cause adverse effects in humans and the effect of sourdough microbiota on their structure, quantity and biological properties. Furthermore, presumed benefits of secondary metabolites and reduction of contaminants are discussed. The benefits claimed deriving from in vitro and in vivo experiments will be evaluated across a broader spectrum in terms of clinically relevant effects on human health. Accordingly, this critical review aims to contribute to a better understanding of the extent to which sourdough bread may result in measurable health benefits in humans.

4.
Carbohydr Polym ; 319: 121145, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567703

ABSTRACT

Recreating the intricate mechanical and functional gradients found in natural tissues through additive manufacturing poses significant challenges, including the need for precise control over time and space and the availability of versatile biomaterial inks. In this proof-of-concept study, we developed a new biomaterial ink for direct ink writing, allowing the creation of 3D structures with tailorable functional and mechanical gradients. Our ink formulation combined multifunctional cellulose nanofibrils (CNFs), allyl-functionalized gelatin (0.8-2.0 wt%), and polyethylene glycol dithiol (3.0-7.5 wt%). The CNF served as a rheology modifier, whereas a concentration of 1.8 w/v % in the inks was chosen for optimal printability and shape fidelity. In addition, CNFs were functionalized with azido groups, enabling the spatial distribution of functional moieties within a 3D structure. These functional groups were further modified using a spontaneous click chemistry reaction. Through additive manufacturing and a readily available static mixer, we successfully demonstrated the fabrication of mechanical gradients - ranging from 3 to 6 kPa in indentation strength - and functional gradients. Additionally, we introduced dual gradients by combining gradient printing with an anisotropic photocrosslinking step. The developed biomaterial ink opens up possibilities for printing intricate multigradient structures, resembling the complex hierarchical organization seen in living tissues.

5.
Talanta ; 233: 122460, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215100

ABSTRACT

Thin-layer chromatography (TLC) allows the swift analysis of larger sample sets in almost any laboratory. The obtained chromatograms are patterns of coloured zones that are conveniently evaluated and classified by visual inspection. This manual approach reaches its limit when several dozens or a few hundred samples need to be evaluated. Methods to classify TLCs automatically and objectively have been explored but without a definitive conclusion; established methods, such as principal component analysis, suffer from the variability of the data, while contemporary omics methods were constructed for the analysis of large numbers of highly resolved analyses. Self-organizing maps (SOMs) are an algorithm for unsupervised learning that reduces higher dimensional datasets to a two-dimensional map, locating similar samples close to each other. It tolerates small variations between samples of the same type. We investigated the capability of SOMs for the evaluation of TLCs with two sample sets. With the first one (495 analyses of essential oils), it was confirmed that SOMs arrange the same type of sample in a common region. The obtained multi-class maps were used to classify a test set and to explore the causes for the few misclassifications (<3%). With the second test set (50 extracts of experimental wheats), the effects of a greater variability within substance classes was explored. With SOMs, it was possible to single out the exceptional samples that warranted a more detailed investigation. In addition, the SOM quality control index method was tested. It proved to be considerably stricter than the classification with a SOM of all samples. When this method was unable to classify a sample correctly, it would flag the sample for inspection, as it gave either multiple assignments or none at all. The combination of SOMs and TLC - two accessible analytical tools - can be most useful for the unsupervised classification of samples by TLC, and to identify samples that stand out from a set and are therefore worth the investment into additional analyses with more complex or expensive methods.


Subject(s)
Algorithms , Neural Networks, Computer , Magnetic Resonance Imaging , Principal Component Analysis , Quality Control
6.
Front Nutr ; 8: 667370, 2021.
Article in English | MEDLINE | ID: mdl-34124122

ABSTRACT

Amylase/trypsin-inhibitors (ATIs) comprise about 2-4% of the total wheat grain proteins and may contribute to natural defense against pests and pathogens. However, they are currently among the most widely studied wheat components because of their proposed role in adverse reactions to wheat consumption in humans. ATIs have long been known to contribute to IgE-mediated allergy (notably Bakers' asthma), but interest has increased since 2012 when they were shown to be able to trigger the innate immune system, with attention focused on their role in coeliac disease which affects about 1% of the population and, more recently, in non-coeliac wheat sensitivity which may affect up to 10% of the population. This has led to studies of their structure, inhibitory properties, genetics, control of expression, behavior during processing, effects on human adverse reactions to wheat and, most recently, strategies to modify their expression in the plant using gene editing. We therefore present an integrated account of this range of research, identifying inconsistencies, and gaps in our knowledge and identifying future research needs. Note  This paper is the outcome of an invited international ATI expert meeting held in Amsterdam, February 3-5 2020.

7.
Front Plant Sci ; 12: 661484, 2021.
Article in English | MEDLINE | ID: mdl-33897749

ABSTRACT

Resistance to Fusarium head blight (FHB) of spelt wheat was investigated in field trials carried out at three European locations between 2016 and 2018. Resistance was assessed after artificial inoculation by visual scoring of symptoms and the determination of the contamination of grains and glumes with the mycotoxin deoxynivalenol (DON). It was found that typical spelt traits such as tall plant height, lax spikes, and tough glumes play a role as passive resistance factors. Across all test environments, modern spelt varieties with a significantly reduced plant height showed a significantly higher susceptibility to FHB and a higher contamination of the grains with DON compared to old landraces/varieties and plant genetic resources. Similarly, the lowest mycotoxin levels in grains were found only in old landraces and varieties, while the highest DON concentration was observed mainly in modern varieties. The results obtained can be used for the selection of suitable parental material for breeding spelt with improved FHB resistance.

8.
BMC Plant Biol ; 21(1): 113, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33627080

ABSTRACT

BACKGROUND: Recent studies indicate that amylase-trypsin inhibitors (ATIs) and certain carbohydrates referred to as FODMAPs (fermentable oligo-, di-, monosaccharides and polyols) play an important role in promoting wheat sensitivity. Hitherto, no study has investigated the accumulation of ATIs during the development of the wheat caryopsis. We collected caryopses of common wheat cv. 'Arnold' at eight different grain developmental stages to study compositional changes in ATI and FODMAP content. RESULTS: The harvested caryopses were analysed for their size, protein and carbohydrate concentrations. ATIs were further characterized by MALDI-TOF MS, and their trypsin inhibition was evaluated by an enzymatic assay. The results showed that ATI accumulation started about 1 week after anthesis and subsequently increased steadily until physiological maturity. However, the biological activity of ATIs in terms of enzyme inhibition was not detectable before about 4 weeks after anthesis. Carbohydrate analysis revealed the abundance of short-chain fructans in early stages of grain development, whereas non-water-soluble carbohydrates increased during later developmental stages. CONCLUSIONS: The results provide new insights into the complex metabolisms during grain filling and maturation, with particular emphasis on the ATI content as well as the inhibitory potential towards trypsin. The time lag between ATI accumulation and development of their biological activity is possibly attributed to the assembling of ATIs to dimers and tetramers, which seems to be crucial for their inhibitory potential.


Subject(s)
Amylases/metabolism , Edible Grain/growth & development , Enzyme Inhibitors/metabolism , Seeds/growth & development , Triticum/growth & development , Trypsin Inhibitors/metabolism , Trypsin/metabolism , Austria , Carbohydrate Metabolism
9.
Ecol Evol ; 10(8): 3620-3635, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32313622

ABSTRACT

Many ephemeral mudflat species, which rely on a soil seed bank to build up the next generation, are endangered in their natural habitat due to the widespread regulation of rivers. The aim of the present study was to elucidate the role of the soil seed bank and dispersal for the maintenance of genetic diversity in populations of near-natural river habitats and anthropogenic habitats created by traditional fish farming practices using Cyperus fuscus as a model. Using microsatellite markers, we found no difference in genetic diversity levels between soil seed bank and above-ground population and only moderate differentiation between the two fractions. One possible interpretation is the difference in short-term selection during germination under specific conditions (glasshouse versus field) resulting in an ecological filtering of genotypes out of the reservoir in the soil. River populations harbored significantly more genetic diversity than populations from the anthropogenic pond types. We suggest that altered levels and patterns of dispersal together with stronger selection pressures and historical bottlenecks in anthropogenic habitats are responsible for the observed reduction in genetic diversity. Dispersal is also supposed to largely prohibit genetic structure across Europe, although there is a gradient in private allelic richness from southern Europe (high values) to northern, especially north-western, Europe (low values), which probably relates to postglacial expansion out of southern and/or eastern refugia.

10.
Food Chem ; 299: 125038, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31284248

ABSTRACT

Wheat is one of the world's most widely consumed staple food. However, the number of people suffering from wheat-related disorders has increased drastically. Amylase-trypsin inhibitors (ATIs) have recently been identified as one of the main triggers of non-celiac wheat sensitivity (NCWS). In this study, an enzymatic assay for the determination of trypsin inhibition activity in hexaploid wheat was developed. This method was optimized with respect to several parameters, such as extraction and incubation procedures, and was validated according to international standards, concerning accuracy, precision and robustness of the method. Results revealed that linear inhibition and thus accuracy occurred only in a narrow concentration range. However, after optimization of settings the novel method was found to be satisfactory for accurate determination of trypsin inhibition in wheat. Purification of the wheat extract with immobilized trypsin beads led to the identification of CM inhibitors (chloroform/methanol soluble proteins) as main contributors of trypsin inhibition.


Subject(s)
Amylases/pharmacology , Enzyme Assays/methods , Triticum/enzymology , Trypsin Inhibitors/pharmacology , Trypsin/metabolism , Allergens/pharmacology , Humans
11.
Front Plant Sci ; 10: 501, 2019.
Article in English | MEDLINE | ID: mdl-31114595

ABSTRACT

In the present study we analyzed the responses of wheat to mild salinity and drought with special emphasis on the so far unclarified interaction of these important stress factors by using high-throughput phenotyping approaches. Measurements were performed on 14 genotypes of different geographic origin (Austria, Azerbaijan, and Serbia). The data obtained by non-invasive digital RGB imaging of leaf/shoot area reflect well the differences in total biomass measured at the end of the cultivation period demonstrating that leaf/shoot imaging can be reliably used to predict biomass differences among different cultivars and stress conditions. On the other hand, the leaf/shoot area has only a limited potential to predict grain yield. Comparison of gas exchange parameters with biomass accumulation showed that suppression of CO2 fixation due to stomatal closure is the principal cause behind decreased biomass accumulation under drought, salt and drought plus salt stresses. Correlation between grain yield and dry biomass is tighter when salt- and drought stress occur simultaneously than in the well-watered control, or in the presence of only salinity or drought, showing that natural variation of biomass partitioning to grains is suppressed by severe stress conditions. Comparison of yield data show that higher biomass and grain yield can be expected under salt (and salt plus drought) stress from those cultivars which have high yield parameters when exposed to drought stress alone. However, relative yield tolerance under drought stress is not a good indicator of yield tolerance under salt (and salt plus drought) drought stress. Harvest index of the studied cultivars ranged between 0.38 and 0.57 under well watered conditions and decreased only to a small extent (0.37-0.55) even when total biomass was decreased by 90% under the combined salt plus drought stress. It is concluded that the co-occurrence of mild salinity and drought can induce large biomass and grain yield losses in wheat due to synergistic interaction of these important stress factors. We could also identify wheat cultivars, which show high yield parameters under the combined effects of salinity and drought demonstrating the potential of complex plant phenotyping in breeding for drought and salinity stress tolerance in crop plants.

12.
Plant Methods ; 14: 29, 2018.
Article in English | MEDLINE | ID: mdl-29610577

ABSTRACT

BACKGROUND: Anthocyanins are abundant secondary metabolites responsible for most blue to blue-black, and red to purple colors of various plant organs. In wheat grains, anthocyanins are accumulated in the pericarp and/or aleurone layer. Anthocyanin pigmented wheat grains can be processed into functional foods with potential health benefits due to the antioxidant properties of the anthocyanins. The grain anthocyanin content can be increased by pyramidizing the different genes responsible for the accumulation of anthocyanins in the different grain layers. Our objective was to develop a high-performance thin-layer chromatography (HPTLC) method that allows the determination of both the anthocyanin profile and the total pigment concentration. Thereby, selection of breeding lines with significantly higher grain anthocyanin content from purple pericarp × blue aleurone wheat crosses should become more efficient than selection based on only visual scoring of grain color and the unspecific determination of anthocyanin concentration by UV/Vis spectroscopy. RESULTS: A wide variability in the grain anthocyanin content was observed in breeding lines and check varieties. The highest concentration of anthocyanins was observed in deep purple (i.e. combination of the purple pericarp and blue aleurone genetics) grained breeding lines, followed by blue aleurone and purple pericarp genotypes. Determination of the total anthocyanin content was included into the chromatographic analysis, rendering an additional photometric analysis unnecessary. Ten target zones were identified in anthocyanin pigmented wheat grains; four of these zones were typically for blue aleurone types, five for purple pericarp types, and one (i.e. kuromanin glucoside) was characteristic for both. Chemometrics applied to the anthocyanin profile recorded by scanning densitometry revealed that peak heights and peak areas are highly correlated and that seven out of the ten target zones were responsible for about 90% of the total variation in the germplasm. Multivariate analysis of these seven target zones allowed not only a separation of the genetic material into purple, blue and deep purple grained genotypes, but also the identification of genotypes with a specific anthocyanin pattern. Thereby, the original classification by visual scoring was overruled in about one-third of the breeding lines. CONCLUSIONS: The presented HPTLC method with à côté calibration allowed the profiling of the pigments and quantification of wheat grain anthocyanin content in a single analysis, replacing UV/Vis spectroscopy with subsequent HPLC analysis. Moreover, no sample preparation apart from extraction and filtration is required, and more than 15 samples can be evaluated in one analysis run, corresponding to several dozens of samples per day. Hence, the method fulfills the requirements for screening methods in early generations of a plant breeding program such as high-throughput, small sample size, high repeatability, fast determination, and reasonable costs per sample. Combined with multivariate statistical analysis, the anthocyanin pattern allowed the validation of the genetic background in the offspring of purple × blue wheat crosses and, therefore, the efficient selection of genotypes exhibiting both the cyanidin and delphinidin aglycon.

13.
J Chromatogr A ; 1533: 193-198, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29249535

ABSTRACT

Quantitative High Performance Thin Layer Chromatography (HPTLC) requires the application of several standards to each plate, reducing the number of actual samples that can be analyzed in a single run. Using pure standard compounds and a selective detection method, the standards for quantitation can be applied besides - à côté - the chromatography area. This frees the sample application space to accommodate the maximal number of sample on each plate. Also, analysis time is spent exclusively on samples, drastically shortening the effective analysis time per sample and increasing sample throughput. Using this new calibration approach, the sample capacity of regular HPTLC methods can be increased or their scope be extended by an additional quantitative analysis. As a limitation, changes to the distribution of samples and standards within the plate as well as interferences from matrix compounds must be observed. We demonstrate the feasibility of this method by complementing an HPTLC method with a quantitative analysis of total anthocyanin content in colored wheat varieties. The quantitation was validated and compared to the conventional photometric analysis. As outcome, the additional photometric analysis could be replaced and rendered unnecessary, saving time, effort and equipment. This approach could also be employed to quantify highly retained substances, which are usually inaccessible for quantitative analysis.


Subject(s)
Chemistry Techniques, Analytical/methods , Chemistry Techniques, Analytical/standards , Chromatography, Thin Layer/standards , Calibration , Reference Standards
14.
Flora ; 234: 135-149, 2017 Sep.
Article in English | MEDLINE | ID: mdl-31719726

ABSTRACT

Cyperus fuscus is a representative of threatened ephemeral wetland plant communities in summer-dry shoreline habitats. We compared variation and plasticity in traits related to fitness and growth of plants germinating from the soil seed bank and established plants from river and secondary anthropogenic habitats. Plants from sites at rivers, fishponds and fish storage ponds were cultivated and selfed to get homogenous seed material for a germination and an environmental manipulation experiment involving three different water regimes. Differences in traits and their plasticities were evaluated by means of linear mixed models. Cyperus fuscus followed a low-oxygen escape strategy when flooded. Seeds of plants derived from the soil seed bank germinated faster than seeds of plants derived from established plants suggesting that short-term selection of genotypes is mediated by the particular conditions on the site during germination. The experiment revealed significant differences between river and secondary habitats as well as between the soil seed bank and established plants. For example, plants from river habitats produced the highest number of culms with inflorescences. The difference was most evident under partial submergence. Plants from fish storage ponds rapidly reached the reproductive phase, but produced less culms with inflorescences. This seemingly allows them to cope with numerous and irregular disturbances and intensive substrate moisture changes. Our results suggest that populations have adapted to conditions at secondary habitats provided by fish farming during the last centuries.

15.
Theor Appl Genet ; 130(2): 363-376, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27826661

ABSTRACT

KEY MESSAGE: Early generation genomic selection is superior to conventional phenotypic selection in line breeding and can be strongly improved by including additional information from preliminary yield trials. The selection of lines that enter resource-demanding multi-environment trials is a crucial decision in every line breeding program as a large amount of resources are allocated for thoroughly testing these potential varietal candidates. We compared conventional phenotypic selection with various genomic selection approaches across multiple years as well as the merit of integrating phenotypic information from preliminary yield trials into the genomic selection framework. The prediction accuracy using only phenotypic data was rather low (r = 0.21) for grain yield but could be improved by modeling genetic relationships in unreplicated preliminary yield trials (r = 0.33). Genomic selection models were nevertheless found to be superior to conventional phenotypic selection for predicting grain yield performance of lines across years (r = 0.39). We subsequently simplified the problem of predicting untested lines in untested years to predicting tested lines in untested years by combining breeding values from preliminary yield trials and predictions from genomic selection models by a heritability index. This genomic assisted selection led to a 20% increase in prediction accuracy, which could be further enhanced by an appropriate marker selection for both grain yield (r = 0.48) and protein content (r = 0.63). The easy to implement and robust genomic assisted selection gave thus a higher prediction accuracy than either conventional phenotypic or genomic selection alone. The proposed method took the complex inheritance of both low and high heritable traits into account and appears capable to support breeders in their selection decisions to develop enhanced varieties more efficiently.


Subject(s)
Genomics/methods , Plant Breeding/methods , Selection, Genetic , Triticum/genetics , Edible Grain/growth & development , Phenotype
16.
Theor Appl Genet ; 129(6): 1179-89, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27067826

ABSTRACT

KEY MESSAGE: We evaluated genomic selection across five breeding cycles of bread wheat breeding. Bias of within-cycle cross-validation and methods for improving the prediction accuracy were assessed. The prospect of genomic selection has been frequently shown by cross-validation studies using the same genetic material across multiple environments, but studies investigating genomic selection across multiple breeding cycles in applied bread wheat breeding are lacking. We estimated the prediction accuracy of grain yield, protein content and protein yield of 659 inbred lines across five independent breeding cycles and assessed the bias of within-cycle cross-validation. We investigated the influence of outliers on the prediction accuracy and predicted protein yield by its components traits. A high average heritability was estimated for protein content, followed by grain yield and protein yield. The bias of the prediction accuracy using populations from individual cycles using fivefold cross-validation was accordingly substantial for protein yield (17-712 %) and less pronounced for protein content (8-86 %). Cross-validation using the cycles as folds aimed to avoid this bias and reached a maximum prediction accuracy of [Formula: see text] = 0.51 for protein content, [Formula: see text] = 0.38 for grain yield and [Formula: see text] = 0.16 for protein yield. Dropping outlier cycles increased the prediction accuracy of grain yield to [Formula: see text] = 0.41 as estimated by cross-validation, while dropping outlier environments did not have a significant effect on the prediction accuracy. Independent validation suggests, on the other hand, that careful consideration is necessary before an outlier correction is undertaken, which removes lines from the training population. Predicting protein yield by multiplying genomic estimated breeding values of grain yield and protein content raised the prediction accuracy to [Formula: see text] = 0.19 for this derived trait.


Subject(s)
Plant Breeding , Quantitative Trait, Heritable , Selection, Genetic , Triticum/genetics , Edible Grain/chemistry , Genome, Plant , Genotype , Phenotype , Plant Proteins/chemistry
17.
Front Plant Sci ; 6: 570, 2015.
Article in English | MEDLINE | ID: mdl-26257766

ABSTRACT

Trait-based breeding is essential to improve wheat yield, particularly when stress adaptation is targeted. A set of modern and underutilized wheat genotypes was examined in a 2-year field experiment with distinct seasonal water supply. Yield formation and drought response strategies were analyzed in relation to components of Passioura's yield-water framework based on phenological, morphological, physiological, and root characteristics. Limited water supply resulted in 60% yield loss and substantially lower water use (37%), water use efficiency (32.6%), and harvest index (14%). Phenology and root length density were key determinants of water use. Late flowering underutilized wheat species with large root system and swift ground coverage showed greatest water use. Leaf chlorophyll concentration and stomata conductance were higher in modern cultivars, supporting their high biomass growth and superior water use efficiency. While, lower chlorophyll concentration and stomata conductance of underutilized wheats indicated a water saving strategy with an intrinsic limitation of potential growth. Harvest index was strongly dependent on phenology and yield components. Optimized flowering time, reduced tillering, and strong grain sink of modern cultivars explained higher harvest index compared to underutilized wheats. Cluster analysis revealed the consistent differentiation of underutilized and modern wheats based on traits underlying Passioura's yield-water framework. We identified physiological and root traits within modern cultivars to be targeted for trait-based crop improvement under water-limited conditions. High capacity of water use in underutilized genetic resources is related to yield-limiting phenological and morphological traits, constraining their potential role for better drought resistance. Still some genetic resources provide adaptive features for stress resistance compatible with high yield as revealed by high harvest index under drought of Khorasan wheat.

18.
PLoS One ; 8(5): e63125, 2013.
Article in English | MEDLINE | ID: mdl-23671661

ABSTRACT

Reference genes (RGs) with uniform expression are used for normalization of reverse transcription quantitative PCR (RT-qPCR) data. Their optimization for a specific biological context, e.g. a specific tissue, has been increasingly considered. In this article, we compare RGs identified by expression data meta-analysis restricted to the context tissue, the jejunum of Mus musculus domesticus, i) to traditional RGs, ii) to expressed interspersed repeated DNA elements, and iii) to RGs identified by meta-analysis of expression data from diverse tissues and conditions. To select the set of candidate RGs, we developed a novel protocol for the cross-platform meta-analysis of microarray data. The expression stability of twenty-four putative RGs was analysed by RT-qPCR in at least 14 jejunum samples of the mouse strains C57Bl/6N, CD1, and OF1. Across strains, the levels of expression of the novel RGs Plekha7, Zfx, and Ube2v1 as well as of Oaz1 varied less than two-fold irrespective of genotype, sex or their combination. The gene set consisting of Plekha7 and Oaz1 showed superior expression stability analysed with the tool RefFinder. The novel RGs are functionally diverse. This facilitates expression studies over a wide range of conditions. The highly uniform expression of the optimized RGs in the jejunum points towards their involvement in tightly regulated pathways in this tissue. We also applied our novel protocol of cross-microarray platform meta-analysis to the identification of RGs in the duodenum, the ileum and the entire small intestine. The selection of RGs with improved expression stability in a specific biological context can reduce the number of RGs for the normalization step of RT-qPCR expression analysis, thus reducing the number of samples and experimental costs.


Subject(s)
Gene Expression Profiling/methods , Jejunum/metabolism , Oligonucleotide Array Sequence Analysis/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Algorithms , Animals , Female , Gene Expression Profiling/standards , Gene Expression Profiling/statistics & numerical data , Gene Regulatory Networks , Kruppel-Like Transcription Factors/genetics , Male , Meta-Analysis as Topic , Mice , Mice, Inbred C57BL , Models, Genetic , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis/standards , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Proteins/genetics , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , Sequence Analysis, DNA , Ubiquitin-Conjugating Enzymes/genetics
19.
J Agric Food Chem ; 55(21): 8541-7, 2007 Oct 17.
Article in English | MEDLINE | ID: mdl-17894457

ABSTRACT

Two pigmented wheat genotypes (blue and purple) and two black barley genotypes were fractionated in bran and flour fractions, examined, and compared for their free radical scavenging properties against 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (Trolox equivalent antioxidant capacity, TEAC), ferric reducing antioxidant power (FRAP), total phenolic content (TPC), phenolic acid composition, carotenoid composition, and total anthocyanin content. The results showed that fractionation has a significant influence on the antioxidant properties, TPC, anthocyanin and carotenoid contents, and phenolic acid composition. Bran fractions had the greatest antioxidant activities (1.9-2.3 mmol TEAC/100 g) in all four grain genotypes and were 3-5-fold higher than the respective flour fractions (0.4-0.7 mmol TEAC/100 g). Ferulic acid was the predominant phenolic acid in wheat genotypes (bran fractions) while p-coumaric acid was the predominant phenolic acid in the bran fractions of barley genotypes. High-performance liquid chromatography analysis detected the presence of lutein and zeaxanthin in all fractions with different distribution patterns within the genotypes. The highest contents of anthocyanins were found in the middlings of black barley genotypes or in the shorts of blue and purple wheat. These data suggest the possibility to improve the antioxidant release from cereal-based food through selection of postharvest treatments.


Subject(s)
Antioxidants/analysis , Hordeum/chemistry , Seeds/chemistry , Triticum/chemistry , Anthocyanins/analysis , Carotenoids/analysis , Coumaric Acids/analysis , Flour/analysis , Genotype , Hordeum/genetics , Propionates , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...