Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 110(4): 1643-1651, 2021 04.
Article in English | MEDLINE | ID: mdl-33122049

ABSTRACT

Discrimination between potentially immunogenic protein aggregates and harmless pharmaceutical components, like silicone oil, is critical for drug development. Flow imaging techniques allow to measure and, in principle, classify subvisible particles in protein therapeutics. However, automated approaches for silicone oil discrimination are still lacking robustness in terms of accuracy and transferability. In this work, we present an image-based filter that can reliably identify silicone oil particles in protein therapeutics across a wide range of parenteral products. A two-step classification approach is designed for automated silicone oil droplet discrimination, based on particle images generated with a flow imaging instrument. Distinct from previously published methods, our novel image-based filter is trained using silicone oil droplet images only and is, thus, independent of the type of protein samples imaged. Benchmarked against alternative approaches, the proposed filter showed best overall performance in categorizing silicone oil and non-oil particles taken from a variety of protein solutions. Excellent accuracy was observed particularly for higher resolution images. The image-based filter can successfully distinguish silicone oil particles with high accuracy in protein solutions not used for creating the filter, showcasing its high transferability and potential for wide applicability in biopharmaceutical studies.


Subject(s)
Microscopy , Silicone Oils , Particle Size , Proteins , Silicones
2.
Phys Chem Chem Phys ; 21(35): 18839-18849, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31353386

ABSTRACT

The zinc blende (γ) phase of copper iodide holds the record hole conductivity for intrinsic transparent p-type semiconductors. In this work, we employ a high-throughput approach to systematically explore strategies for enhancing γ-CuI further by impurity incorporation. Our objectives are not only to find a practical approach to increase the hole conductivity in CuI thin films, but also to explore the possibility for ambivalent doping. In total 64 chemical elements were investigated as possible substitutionals on either the copper or the iodine site. All chalcogen elements were found to display acceptor character when substituting iodine, with sulfur and selenium significantly enhancing carrier concentrations produced by the native VCu defects under conditions most favorable for impurity incorporation. Furthermore, eight impurities suitable for n-type doping were discovered. Unfortunately, our work also reveals that donor doping is hindered by compensating native defects, making ambipolar doping unlikely. Finally, we investigated how the presence of impurities influences the optical properties. In the majority of the interesting cases, we found no deep states in the band-gap, showing that CuI remains transparent upon doping.

3.
J Phys Chem C Nanomater Interfaces ; 122(31): 17612-17620, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30258525

ABSTRACT

Transparent conductive oxides (TCOs) are essential in technologies coupling light and electricity. For Sn-based TCOs, oxygen deficiencies and undercoordinated Sn atoms result in an extended density of states below the conduction band edge. Although shallow states provide free carriers necessary for electrical conductivity, deeper states inside the band gap are detrimental to transparency. In zinc tin oxide (ZTO), the overall optoelectronic properties can be improved by defect passivation via annealing at high temperatures. Yet, the high thermal budget associated with such treatment is incompatible with many applications. Here, we demonstrate an alternative, low-temperature passivation method, which relies on cosputtering Sn-based TCOs with silicon dioxide (SiO2). Using amorphous ZTO and amorphous/polycrystalline tin dioxide (SnO2) as representative cases, we demonstrate through optoelectronic characterization and density functional theory simulations that the SiO2 contribution is twofold. First, oxygen from SiO2 passivates the oxygen deficiencies that form deep defects in SnO2 and ZTO. Second, the ionization energy of the remaining deep defect centers is lowered by the presence of silicon atoms. Remarkably, we find that these ionized states do not contribute to sub-gap absorptance. This simple passivation scheme significantly improves the optical properties without affecting the electrical conductivity, hence overcoming the known transparency-conductivity trade-off in Sn-based TCOs.

4.
Angew Chem Int Ed Engl ; 57(36): 11623-11628, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30022577

ABSTRACT

The application of pressure allows systematic tuning of the charge density of a material cleanly, that is, without changes to the chemical composition via dopants, and exploratory high-pressure experiments can inform the design of bulk syntheses of materials that benefit from their properties under compression. The electronic and structural response of semiconducting tin nitride Sn3 N4 under compression is now reported. A continuous opening of the optical band gap was observed from 1.3 eV to 3.0 eV over a range of 100 GPa, a 540 nm blue-shift spanning the entire visible spectrum. The pressure-mediated band gap opening is general to this material across numerous high-density polymorphs, implicating the predominant ionic bonding in the material as the cause. The rate of decompression to ambient conditions permits access to recoverable metastable states with varying band gaps energies, opening the possibility of pressure-tuneable electronic properties for future applications.

5.
Sci Rep ; 7(1): 6825, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28754909

ABSTRACT

We investigate the possibility of achieving high-temperature superconductivity in hydrides under pressure by inducing metallization of otherwise insulating phases through doping, a path previously used to render standard semiconductors superconducting at ambient pressure. Following this idea, we study H2O, one of the most abundant and well-studied substances, we identify nitrogen as the most likely and promising substitution/dopant. We show that for realistic levels of doping of a few percent, the phase X of ice becomes superconducting with a critical temperature of about 60 K at 150 GPa. In view of the vast number of hydrides that are strongly covalent bonded, but that remain insulating up to rather large pressures, our results open a series of new possibilities in the quest for novel high-temperature superconductors.

6.
J Chem Phys ; 144(3): 034203, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26801027

ABSTRACT

Measuring similarities/dissimilarities between atomic structures is important for the exploration of potential energy landscapes. However, the cell vectors together with the coordinates of the atoms, which are generally used to describe periodic systems, are quantities not directly suitable as fingerprints to distinguish structures. Based on a characterization of the local environment of all atoms in a cell, we introduce crystal fingerprints that can be calculated easily and define configurational distances between crystalline structures that satisfy the mathematical properties of a metric. This distance between two configurations is a measure of their similarity/dissimilarity and it allows in particular to distinguish structures. The new method can be a useful tool within various energy landscape exploration schemes, such as minima hopping, random search, swarm intelligence algorithms, and high-throughput screenings.

7.
Angew Chem Int Ed Engl ; 54(5): 1456-60, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25488306

ABSTRACT

Millimeter-scale tubes are observed to sprout from water droplets injected into a bath of toluene containing ethanol and silica colloids. This phenomenon requires that first a membrane is formed by the colloids which self-assemble at the droplet interface, and second, that the ethanol preferentially partitions into the aqueous phase leading to an internal over-pressure. Tube growth, eruption, and shuffling droplets are subsequently observed, depending on the concentration of ethanol and colloids selected. This work opens many possibilities in the field of biomimetic droplets for fundamental studies of artificial growth at the microscale and for emulsion-related applications.


Subject(s)
Water/chemistry , Colloids/chemistry , Ethanol/chemistry , Rheology , Silicon Dioxide/chemistry , Surface Properties , Toluene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...