Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Commer Biotechnol ; 15(2): 161-170, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-20161069

ABSTRACT

Traditional scientist training at the PhD level does not prepare students to be competitive in biotechnology or other non-academic science careers. Some universities have developed biotechnology-relevant doctoral programmes, but most have not. Forming a life science career club makes a statement to university administrators that it is time to rework the curriculum to include biotechnology-relevant training. A career club can supplement traditional PhD training by introducing students to available career choices, help them develop a personal network and teach the business skills that they will need to be competitive in science outside of academia. This paper is an instructional guide designed to help students create a science career club at their own university. These suggestions are based on the experience gained in establishing such a club for the Graduate School at the University of Colorado Denver. We describe the activities that can be offered, the job descriptions for the offices required and potential challenges. With determination, a creative spirit, and the guidance of this paper, students should be able to greatly increase awareness of science career options, and begin building the skills necessary to become competitive in non-academic science.

2.
J Comp Neurol ; 510(5): 508-24, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18680201

ABSTRACT

Voltage-gated potassium (Kv) channels sculpt neuronal excitability and play important developmental roles. Kv channels consist of pore-forming alpha- and auxiliary subunits. For many Kv alpha-subunits, existing mRNA probes and antibodies have allowed analysis of expression patterns, typically during adult stages. Here, we focus on the Kv2.2 alpha-subunit, for which the mRNA shows broad expression in the embryo and adult. A lack of suitable antibodies, however, has hindered detailed analysis of Kv2.2 protein localization, especially during development. We developed an antibody that specifically recognizes Kv2.2 protein in Xenopus laevis, a vertebrate well suited for study of early developmental stages. The Kv2.2 antibody recognized heterologously expressed Kv2.2 but not the closely related Kv2.1 protein. Immunodetection of the protein showed its presence at St 32 in ventrolateral regions of the hindbrain and spinal cord. At later stages, several sensory tissues (retina, otic, and olfactory epithelia) also expressed Kv2.2 protein. As development progressed in the central nervous system, Kv2.2 protein distribution expanded in close association with the cytoskeletal marker alpha-tubulin, consistent with growth of neuronal tracts. We analyzed the subcellular distribution of Kv2.2 protein within single cultured neurons. In addition to a surface membrane presence, Kv2.2 protein also resided intracellularly closely associated with alpha-tubulin, as in vivo. Furthermore, in contrast to Kv2.1, Kv2.2 protein localized to long, axonal-like processes, consistent with its in vivo location in tracts. Despite their primary sequence similarity, the contrasting localizations of Kv2.1 and Kv2.2 support different roles for the two during development and neuronal signaling.


Subject(s)
Larva , Protein Subunits/metabolism , Shab Potassium Channels/metabolism , Xenopus laevis , Animals , Brain/cytology , Brain/embryology , Brain/metabolism , Cell Line , Humans , Larva/anatomy & histology , Larva/physiology , Neurons/cytology , Neurons/metabolism , Protein Subunits/genetics , Retina/cytology , Retina/embryology , Retina/metabolism , Shab Potassium Channels/genetics , Xenopus laevis/anatomy & histology , Xenopus laevis/embryology , Xenopus laevis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...