Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 18(6): 411-417, 1998 Jun.
Article in English | MEDLINE | ID: mdl-12651366

ABSTRACT

Effects of short-term (32 days) flooding on photosynthesis, stomatal conductance, relative growth rate and tissue starch concentrations of flood-intolerant Quercus alba L. (white oak), bottomland Quercus nigra L. (water oak), bottomland Fraxinus pennsylvanica Marshall. (green ash) and flood-tolerant Nyssa aquatica L. (water tupelo) seedlings were studied under controlled conditions. Net photosynthetic rates of flooded N. aquatica seedlings were reduced by 25% throughout the 32-day flooding period. Net photosynthetic rates of flooded Q. alba seedlings fell rapidly to 25% of those of the control seedlings by Day 4 of the flooding treatment and to 5% by Day 16. In F. pennsylvanica and Q. nigra, net photosynthetic rates were reduced to 50% of control values by Day 8 but remained at approximately 30 and 23%, respectively, of control values by Day 32. Leaves of flooded Q. alba seedlings accumulated approximately twice as much starch as leaves of non-flooded control plants, whereas root starch concentrations decreased to 67% of those of control plants by the end of the 32-day flooding treatment. In contrast, flooding caused only a small increase in leaf starch concentrations of N. aquatica plants, but it increased root starch concentrations to 119% of those of the control plants by the end of the experiment. The co-occurring bottomland species, Fraxinus pennsylvanica and Q. nigra, differed from each other in their patterns of stomatal conductance and root starch concentrations. We conclude that the maintenance of low leaf starch concentrations, and high pre-flood root tissue starch concentrations are important characteristics allowing flood-tolerant species to survive in flooded soils.

2.
Oecologia ; 92(4): 532-541, 1992 Dec.
Article in English | MEDLINE | ID: mdl-28313224

ABSTRACT

Gas exchange patterns, diurnal malic acid fluctuations, and stable carbon isotope ratios of five species of Sedum were investigated to assess the ecophysiological characteristics of three different photosynthetic pathways under well-watered and drought-stressed conditions. All five species have succulent leaves and stems and were examined under identical environmental conditions. When well-watered, Sedum integrifolium (Raf.) Nels. and S. ternatum Michx. displayed C3 photosynthesis, S. telephioides Michx. and S. nuttallianum Raf. exhibited CAM-cycling, and S. wrightii A. Gray showed CAM. When grown under a less frequent watering regime, S. integrifolium and S. ternatum exhibited CAM-cycling, whereas S. telephioides and S. nuttallianum displayed CAM-cycling simultaneously with low-level CAM. Sedum wrightii retained its CAM mode of photosynthesis. In general, leaf δ13C values reflected these variations in photosynthetic pathways. While all values of water-use efficiency (WUE) were greater than those reported for most C3 and C4 species, no correlation of malic acid accumulation in the CAM and CAM-cycling (including low-level CAM) species with increased WUE was found. Sedum wrightii (CAM) had the highest WUE value at night, yet its 24-h WUE was not different from S. ternatum when the latter was in the C3 mode. Thus, relative water-use efficiencies of these species of Sedum were not predictable based on photosynthetic pathways alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...