Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37775154

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) in surface and ground waters supplying municipal drinking water are a growing concern. However, PFAS concentrations in water treatment residuals (WTRs)-a solid by-product of water treatment-have yet to be explored. In a first of its kind assessment, we examine PFAS occurrence in seven calcium (Ca)-, iron-, and aluminum-based drinking water treatment residuals (DWTRs) and one wastewater effluent treatment residual (WWETR) produced using aluminum chlorohydrate (ACH). Only perfluoroalkyl acids (PFAAs) were detected, with total PFAA concentrations in the seven DWTRs produced from naturally recharged water sources ranging from 0 to ∼3.3 µg kg-1 ; no PFAS were detected in either of the Ca-DWTRs. The ACH-WWETR contained the highest number and concentration of PFAAs (34 µg kg-1 ). Desorption of resident PFAAs from the WTRs was negligible for the carboxylates (PFCAs). Some desorption of the sulfonates (PFSAs) was detected, particularly for PFOS which had the highest concentration among all resident PFAAs. The ACH-WWETR was further evaluated for its potential to attenuate additional PFAAs (3500 µg mL-1 total PFAAs) in a biosolid-derived porewater matrix. Sorption was highest for long-chain PFAAs and subsequent desorption of the adsorbed PFAAs ranged from 0% to no more than 26%, with the WWETR mass added strongly affecting both PFSA and PFCA sorption/desorption. These findings suggest that WTRs, if introduced into the environment, are unlikely to be a major source of PFAS. Also, the use of particular WTRs as amendments may provide a beneficial reduction in PFAS mobility.

2.
Environ Pollut ; 322: 121167, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36731742

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of highly persistent contaminants that have been linked to human health effects at low exposure concentrations. Public concerns exist that land-application of biosolids may result in the release of PFAS into terrestrial and aquatic ecosystems. The relative importance of inorganic constituents such as Fe and Al, which are known to impact PFAS retention/release behavior in soils, on PFAS release from wastewater residuals (WWRs, i.e., biosolids and sewage sludges) is not well understood. Here, we examine native concentrations and WWR-water partition coefficients of a range of PFAS in the context of WWRs characteristics including oxalate-extractable Fe and Al, organic matter (OM), dissolved organic carbon, and total protein content. Total PFAS concentrations, which included perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, fluorotelomer sulfonates and some sulfonamides, ranged from ∼480 to 3500 µg PFAS kg-1 dry weight. PFAS WWR-water partition coefficients ranged from ∼10 to 20,000 L kg-1, consistent with the literature. PFAS partitioning was significantly correlated to oxalate extractable Al and Fe as well as bulk OM and protein content. These results have important implications for wastewater treatment facilities that recycle Al- and Fe-based drinking water treatment residuals in terms of both PFAS retention and loading.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Humans , Wastewater , Fluorocarbons/analysis , Biosolids , Ecosystem , Sewage , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...