Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Sports Act Living ; 4: 835659, 2022.
Article in English | MEDLINE | ID: mdl-35463833

ABSTRACT

The pole vault is a highly technical event where the athletes must successfully convert horizontal velocity during the run-up to vertical velocity at take-off. The aim of this study was to compare the kinematics of men's and women's world-class pole vaulting. Video data were collected of the best clearances by 14 men and 11 women at the 2018 IAAF World Indoor Championships using three high-speed cameras (200 Hz). Running velocity, step lengths, step times, and pole angles were measured during the run-up; during take-off, distance from the plant box, angle and velocity of take-off, and relative positions of the foot and hands were measured. Men achieved greater clearance heights with faster run-ups, faster take-off velocities and higher hand grip positions (all p < 0.001), with each of the last three steps longer for men when expressed as absolute values (all p < 0.001), but not when expressed relative to stature. There were no differences in run-up pole angles, step times, take-off angle, take-off contact time or time from pole plant to take-off. Women differed in their approach and take-off for characteristics affected by stature and strength, such as fewer run-up steps, shorter take-off distances, and lower grip heights. These lower grips result from a shorter, lighter pole, and this disadvantage was greater than slower run-up velocities. Coaches should therefore note that sex-based differences occur in the pole vault that result from anthropometric differences, but which do not negate the adoption of similar technical models of vaulting.

2.
Front Sports Act Living ; 3: 702743, 2021.
Article in English | MEDLINE | ID: mdl-34308349

ABSTRACT

The aim of this study was to analyze the link between the upper and lower body during racewalking. Fifteen male and 16 female racewalkers were recorded in a laboratory as they racewalked at speeds equivalent to their 20-km personal records [men: 1:23:12 (±2:45); women: 1:34:18 (±5:15)]; a single representative trial was chosen from each athlete for analysis and averaged data analyzed. Spatial variables (e.g., stride length) were normalized to stature and referred to as ratios. None of the peak upper body joint angles were associated with speed (p < 0.05) and there were no correlations between pelvic motion and speed, but a medium relationship was observed between peak pelvic external rotation (right pelvis rotated backwards) and stride length ratio (r = 0.37). Greater peak shoulder extension was associated with lower stride frequencies (r = -0.47) and longer swing times (r = 0.41), whereas peak elbow flexion had medium associations with flight time (r = -0.44). Latissimus dorsi was the most active muscle at toe-off during peak shoulder flexion; by contrast, pectoralis major increased in activity just before initial contact, concurrent with peak shoulder extension. Consistent but relatively low rectus abdominis and external oblique activation was present throughout the stride, but increased in preparation for initial contact during late swing. The movements of the pelvic girdle were important for optimizing spatiotemporal variables, showing that this exaggerated movement allows for greater stride lengths. Racewalkers should note however that a larger range of shoulder swing movements was found to be associated with lower stride frequency, and smaller elbow angles with increased flight time, which could be indicative of faster walking but can also lead to visible loss of contact. Coaches should remember that racewalking is an endurance event and development of resistance to fatigue might be more important than strength development.

SELECTION OF CITATIONS
SEARCH DETAIL
...