Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 9(18): 15791-15797, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28453282

ABSTRACT

Conventional thermoelectric generators (TEGs) are normally hard, rigid, and flat. However, most objects have curvy surfaces, which require soft and even stretchable TEGs for maximizing efficiency of thermal energy harvesting. Here, soft and stretchable TEGs using conventional rigid Bi2Te3 pellets metallized with a liquid alloy is reported. The fabrication is implemented by means of a tailored layer-by-layer fabrication process. The STEGs exhibit an output power density of 40.6 µW/cm2 at room temperature. The STEGs are operational after being mechanically stretched-and-released more than 1000 times, thanks to the compliant contact between the liquid alloy interconnects and the rigid pellets. The demonstrated interconnect scheme will provide a new route to the development of soft and stretchable energy-harvesting avenues for a variety of emerging electronic applications.

2.
Nat Mater ; 5(9): 730-4, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16906140

ABSTRACT

The emerging field of spintronics explores the many possibilities offered by the prospect of using the spin of the electrons for fast, nanosized electronic devices. The effect of magnetization acting on a current is the essence of giant or tunnel magnetoresistance. Although such spintronics effects already find technological applications, much of the underlying physics remains to be explored. The aim of this article is to demonstrate the importance of spin mixing in metallic nanostructures. Here we show that magnetic clusters embedded in a metallic matrix exhibit a giant magnetic response of more than 500% at low temperature, using a recently developed thermoelectric measurement. This method eliminates the dominating resistivity component of the magnetic response and thus reveals an intrinsic spin-dependent process: the conduction-electron spin precession about the exchange field as the electron crosses the clusters, giving rise to a spin-mixing mechanism with strong field dependence. This effect appears sensibly only in the smallest clusters, that is, at the level of less than 100 atoms per cluster.

SELECTION OF CITATIONS
SEARCH DETAIL
...