Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anesthesiology ; 133(4): 812-823, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32773681

ABSTRACT

BACKGROUND: Experimental evidence shows postnatal exposure to anesthesia negatively affects brain development. The PDZ2 domain, mediating protein-protein interactions of the postsynaptic density-95 protein, serves as a molecular target for several inhaled anesthetics. The authors hypothesized that early postnatal disruption of postsynaptic density-95 PDZ2 domain interactions has persistent effects on dendritic spines and cognitive function. METHODS: One-week-old mice were exposed to 1.5% isoflurane for 4 h or injected with 8 mg/kg active postsynaptic density-95 wild-type PDZ2 peptide along with their respective controls. A subset of these mice also received 4 mg/kg of the nitric oxide donor molsidomine. Hippocampal spine density, long-term potentiation, novel object recognition memory, and fear learning and memory were evaluated in mice. RESULTS: Exposure of 7-day-old mice to isoflurane or postsynaptic density-95 wild-type PDZ2 peptide relative to controls causes: (1) a long-term decrease in mushroom spines at 7 weeks (mean ± SD [spines per micrometer]): control (0.8 ± 0.2) versus isoflurane (0.4 ± 0.2), P < 0.0001, and PDZ2MUT (0.7 ± 0.2) versus PDZ2WT (0.4 ± 0.2), P < 0.001; (2) deficits in object recognition at 6 weeks (mean ± SD [recognition index]): naïve (70 ± 8) versus isoflurane (55 ± 14), P = 0.010, and control (65 ± 13) versus isoflurane (55 ± 14), P = 0.045, and PDZ2MUT (64 ±11) versus PDZ2WT (53 ± 18), P = 0.045; and (3) deficits in fear learning at 7 weeks and memory at 8 weeks (mean ± SD [% freezing duration]): Learning, control (69 ± 12) versus isoflurane (52 ± 13), P < 0.0001, and PDZ2MUT (65 ± 14) versus PDZ2WT (55 ± 14) P = 0.011, and Memory, control (80 ± 17) versus isoflurane (56 ± 23), P < 0.0001 and PDZ2MUT (73 ± 18) versus PDZ2WT (44 ± 19) P < 0.0001. Impairment in long-term potentiation has fully recovered here at 7 weeks (mean ± SD [% baseline]): control (140 ± 3) versus isoflurane (137 ± 8), P = 0.560, and PDZ2MUT (136 ± 17) versus PDZ2WT (128 ± 11), P = 0.512. The isoflurane induced decrease in mushroom spines was preventable by introduction of a nitric oxide donor. CONCLUSIONS: Early disruption of PDZ2 domain-mediated protein-protein interactions mimics isoflurane in decreasing mushroom spine density and causing learning and memory deficits in mice. Prevention of the decrease in mushroom spine density with a nitric oxide donor supports a role for neuronal nitric oxide synthase pathway in mediating this cellular change associated with cognitive impairment.


Subject(s)
Anesthetics, Inhalation/toxicity , Cognition/drug effects , Dendritic Spines/drug effects , Disks Large Homolog 4 Protein/antagonists & inhibitors , Isoflurane/toxicity , Animals , Animals, Newborn , Cognition/physiology , Dendritic Spines/pathology , Dendritic Spines/physiology , Disks Large Homolog 4 Protein/physiology , Female , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Peptides/pharmacology , Post-Synaptic Density/drug effects , Post-Synaptic Density/pathology , Post-Synaptic Density/physiology
2.
PLoS Biol ; 15(7): e2001246, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28683067

ABSTRACT

Clinical and preclinical studies indicate that early postnatal exposure to anesthetics can lead to lasting deficits in learning and other cognitive processes. The mechanism underlying this phenomenon has not been clarified and there is no treatment currently available. Recent evidence suggests that anesthetics might cause persistent deficits in cognitive function by disrupting key events in brain development. The hippocampus, a brain region that is critical for learning and memory, contains a large number of neurons that develop in the early postnatal period, which are thus vulnerable to perturbation by anesthetic exposure. Using an in vivo mouse model we demonstrate abnormal development of dendrite arbors and dendritic spines in newly generated dentate gyrus granule cell neurons of the hippocampus after a clinically relevant isoflurane anesthesia exposure conducted at an early postnatal age. Furthermore, we find that isoflurane causes a sustained increase in activity in the mechanistic target of rapamycin pathway, and that inhibition of this pathway with rapamycin not only reverses the observed changes in neuronal development, but also substantially improves performance on behavioral tasks of spatial learning and memory that are impaired by isoflurane exposure. We conclude that isoflurane disrupts the development of hippocampal neurons generated in the early postnatal period by activating a well-defined neurodevelopmental disease pathway and that this phenotype can be reversed by pharmacologic inhibition.


Subject(s)
Anesthetics, Inhalation/toxicity , Cognitive Dysfunction/chemically induced , Hippocampus/drug effects , Isoflurane/toxicity , TOR Serine-Threonine Kinases/metabolism , Animals , Dendritic Spines/drug effects , Dendritic Spines/pathology , Environmental Exposure , Hippocampus/growth & development , Hippocampus/pathology , Mice , Neurons/drug effects , Neurons/pathology
3.
Neurotoxicol Teratol ; 60: 69-74, 2017.
Article in English | MEDLINE | ID: mdl-27856360

ABSTRACT

Autism is a heterogeneous developmental disorder characterized by impaired social interaction, impaired communication skills, and restricted and repetitive behavior. The abnormal behaviors of these patients can make their anesthetic and perioperative management difficult. Evidence in the literature suggests that some patients with autism or specific autism spectrum disorders (ASD) exhibit altered responses to pain and to anesthesia or sedation. A genetic mouse model of one particular ASD, Phelan McDermid Syndrome, has been developed that has a Shank3 haplotype truncation (Shank3+/Δc). These mice exhibit important characteristics of autism that mimic human autistic behavior. Our study demonstrates that a Shank3+/ΔC mutation in mice is associated with a reduction in both the MAC and RREC50 of isoflurane and down regulation of NR1 in vestibular nuclei and PSD95 in spinal cord. Decreased expression of NR1 and PSD95 in the central nervous system of Shank3+/ΔC mice could help reduce the MAC and RREC50 of isoflurane, which would warrant confirmation in a clinical study. If Shank3 mutations are found to affect anesthetic sensitivity in patients with ASD, better communication and stricter monitoring of anesthetic depth may be necessary.


Subject(s)
Isoflurane/pharmacology , Nerve Tissue Proteins/genetics , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Disks Large Homolog 4 Protein/biosynthesis , Dose-Response Relationship, Drug , Male , Mice , Microfilament Proteins , Mutation , Nerve Tissue Proteins/biosynthesis , Receptors, N-Methyl-D-Aspartate/biosynthesis , Reflex, Righting/drug effects , Rotarod Performance Test , Spinal Cord/metabolism , Vestibular Nuclei/metabolism
4.
Neurotoxicol Teratol ; 60: 33-39, 2017.
Article in English | MEDLINE | ID: mdl-27751818

ABSTRACT

The mechanism by which anesthetics might act on the developing brain in order to cause long term deficits remains incompletely understood. The hippocampus has been identified as a structure that is likely to be involved, as rodent models show numerous deficits in behavioral tasks of learning that are hippocampal-dependent. The hippocampus is an unusual structure in that it is the site of large amounts of neurogenesis postnatally, particularly in the first year of life in humans, and these newly generated neurons are critical to the function of this structure. Intriguingly, neurogenesis is a major developmental event that occurs during postulated windows of vulnerability to developmental anesthetic neurotoxicity across the different species in which it has been studied. In this review, we examine the evidence for anesthetic effects on neurogenesis in the early postnatal period and ask whether neurogenesis should be studied further as a putative mechanism of injury. Multiple anesthetics are considered, and both in vivo and in vitro work is presented. While there is abundant evidence that anesthetics act to suppress neurogenesis at several different phases, evidence of a causal link between these effects and any change in learning behavior remains elusive.


Subject(s)
Anesthetics/adverse effects , Brain/growth & development , Neurogenesis/drug effects , Neurotoxicity Syndromes/etiology , Animals , Humans
5.
J Neurosurg Anesthesiol ; 28(4): 361-372, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27564556

ABSTRACT

Data from epidemiologic studies and animal models have raised a concern that exposure to anesthetic agents during early postnatal life may cause lasting impairments in cognitive function. It is hypothesized that this is due to disruptions in brain development, but the mechanism underlying this toxic effect remains unknown. Ongoing research, particularly in rodents, has begun to address this question. In this review we examine currently postulated molecular mechanisms of anesthetic toxicity in the developing brain, including effects on cell death pathways, growth factor signaling systems, NMDA and GABA receptors, mitochondria, and epigenetic factors. The level of evidence for each putative mechanism is critically evaluated, and we attempt to draw connections between them where it is possible to do so. Although there are many promising avenues of research, at this time no consensus can be reached as to a definitive mechanism of injury.


Subject(s)
Anesthetics/adverse effects , Brain/drug effects , Neurotoxicity Syndromes/etiology , Animals , Brain/physiopathology , Cell Death/drug effects , Humans , Neurotoxicity Syndromes/physiopathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...