Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Therm Biol ; 113: 103500, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37055107

ABSTRACT

Cardiovascular disease is a leading cause of morbidity and mortality worldwide. Stress tests are frequently employed to expose early signs of cardiovascular dysfunction or disease and can be employed, for example, in the context of preterm birth. We aimed to establish a safe and effective thermal stress test to examine cardiovascular function. Guinea pigs were anaesthetized using a 0.8% isoflurane, 70% N2O mix. ECG, non-invasive blood pressure, laser Doppler flowmetry, respiratory rate, and an array of skin and rectal thermistors were applied. A physiologically relevant heating and a cooling thermal stress test was developed. Upper and lower thermal limits for core body temperature were set at 41.5 OC and 34 OC, for the safe recovery of animals. This protocol therefore presents a viable thermal stress test for use in guinea pig models of health and disease that facilitates exploration of whole-system cardiovascular function.


Subject(s)
Cardiovascular System , Premature Birth , Infant, Newborn , Humans , Female , Guinea Pigs , Animals , Exercise Test , Skin/blood supply , Cold Temperature
2.
JAMA Pediatr ; 176(5): e220152, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35344031

ABSTRACT

Importance: Gamma irradiation of leukoreduced red blood cells (RBCs) prevents transfusion-associated graft-vs-host disease but also exacerbates storage lesion formation in RBCs. It is unknown whether freshly irradiated RBCs are more efficacious than irradiated and stored RBCs in preterm infants with high transfusion requirements. Objective: To examine whether transfusion of freshly irradiated vs irradiated and stored RBC components improves cerebral oxygen delivery in preterm infants with anemia. Design, Setting, and Participants: This single-center, double-blinded, proof-of-concept randomized clinical trial was conducted at the neonatal intensive care unit of Wellington Regional Hospital in Wellington, New Zealand, between December 1, 2017, and November 30, 2018. Participants were preterm infants (<34 weeks' gestation at birth) who were at least 14 days of age and had anemia. Participants underwent nonurgent transfusions, and these episodes were randomized to the intervention group (in which the infants received a transfusion of RBCs that were freshly irradiated on the day of transfusion) or control group (in which the infants received a transfusion of RBCs that were irradiated and stored for up to 14 days). Data were analyzed using the evaluable population approach. Intervention: Transfusion of freshly irradiated RBCs. Main Outcomes and Measures: The prespecified primary outcome was the change in cerebral regional oxygen saturation (crSO2) from baseline (immediately before) to immediately after the transfusion. The prespecified secondary outcomes were the change in cerebral fractional tissue oxygen extraction (cFTOE) at different time points (immediately after, 24 hours after, and 120 hours or 5 days after transfusion). Outcomes were measured by blinded clinicians using near-infrared spectroscopy. A covariate-adjusted linear mixed model was used to quantify mean treatment effects and account for multiple transfusions in some infants. Results: A total of 42 infants (mean [SD] gestational age, 26 [10] weeks and 3 days; 29 [69%] boys) were enrolled in the trial and underwent 64 transfusion episodes, which were randomized to the intervention (n = 31) or control (n = 33) group. Compared with infants in the control group, those in the intervention group showed a covariate-adjusted mean increase in crSO2 (2.0 percentage points; 95% CI, 1.2-2.8 percentage points) and a mean decrease in cFTOE (0.02; 95% CI, 0.01-0.04) immediately after transfusion. These differences were sustained up to 120 hours or 5 days after transfusion. There were negligible mean changes in crSO2 or cFTOE in infants in the control group at any of the follow-up time points. Conclusions and Relevance: Results of this trial showed that transfusion of freshly irradiated RBCs conferred a small advantage in cerebral oxygenation for at least 5 days after transfusion compared with transfusion of irradiated and stored RBC components. On-demand irradiation of RBC components may be considered to optimize oxygen delivery in the recipient, but this physiological finding requires further research. Trial Registration: ANZCTR Identifier: ACTRN12617001581358.


Subject(s)
Anemia , Erythrocyte Transfusion , Adult , Erythrocyte Transfusion/methods , Erythrocytes , Female , Humans , Infant , Infant, Newborn , Infant, Premature , Male , Oxygen
3.
PLoS One ; 16(11): e0259559, 2021.
Article in English | MEDLINE | ID: mdl-34780534

ABSTRACT

BACKGROUND: Non-invasive physiological monitoring can induce stress in laboratory animals. Sedation reduces the level of restraint required, thereby improving the validity of physiological signals measured. However, sedatives may alter physiological equilibrium introducing unintended bias and/or, masking the experimental outcomes of interest. We aimed to investigate the cardiorespiratory effects of four short-acting sedatives in juvenile guinea pigs. METHOD: 12 healthy, 38 (26-46) day-old Dunkin Hartley guinea pigs were included in this blinded, randomised, crossover design study. Animals were sedated by intramuscular injection using pre-established minimum effective doses of either alfaxalone (5 mg/kg), diazepam (5 mg/kg), ketamine (30 mg/kg), or midazolam (2 mg/kg) administered in random order with a minimum washout period of 48 hours between agents. Sedative depth, a composite score comprised of five assessment criteria, was observed every 5-min from dosing until arousal. Physiological monitoring of cardiorespiratory status included measures of heart rate, blood pressure, respiratory rate, and peripheral microvascular perfusion. RESULTS: Ketamine and alfaxalone were most effective in inducing stable sedation suitable for physiological monitoring, and diazepam less-so. Midazolam was unsuitable due to excessive hypersensitivity. All sedatives significantly increased heart rate above non-sedated control rates (P<0.0001), without altering blood pressure or microvascular perfusion. Alfaxalone and ketamine reduced respiratory rate relative to their control condition (P<0.0001, P = 0.05, respectively), but within normative ranges. CONCLUSION: Ketamine and alfaxalone are the most effective sedatives for inducing short duration, stable sedation with minimal cardiorespiratory depression in guinea pigs, while diazepam is less-so. However, alfaxalone is the most appropriate sedative for longitudinal studies requiring multiple physiological timepoints.


Subject(s)
Hypnotics and Sedatives/pharmacology , Animals , Blood Pressure , Diazepam/pharmacology , Guinea Pigs , Heart Rate/drug effects , Injections, Intramuscular , Ketamine/pharmacology , Midazolam/pharmacology , Pregnanediones/pharmacology , Respiratory Rate/drug effects
4.
PLoS One ; 15(5): e0233010, 2020.
Article in English | MEDLINE | ID: mdl-32396581

ABSTRACT

Methamphetamine use has increased over the past decade and the first use of methamphetamine is most often when women are of reproductive age. Methamphetamine accumulates in the liver; however, little is known about the effect of methamphetamine use on hepatic drug metabolism. Methamphetamine was administered on 3 occassions to female Dunkin Hartley guinea pigs of reproductive age, mimicking recreational drug use. Low doses of test drugs caffeine and midazolam were administered after the third dose of methamphetamine to assess the functional activity of cytochrome P450 1A2 and 3A, respectively. Real-time quantitative polymerase chain reaction was used to quantify the mRNA expression of factors involved in glucocorticoid signalling, inflammation, oxidative stress and drug transporters. This study showed that methamphetamine administration decreased hepatic CYP1A2 mRNA expression, but increased CYP1A2 enzyme activity. Methamphetamine had no effect on CYP3A enzyme activity. In addition, we found that methamphetamine may also result in changes in glucocorticoid bioavailability, as we found a decrease in 11ß-hydroxysteroid dehydrogenase 1 mRNA expression, which converts inactive cortisone into active cortisol. This study has shown that methamphetamine administration has the potential to alter drug metabolism via the CYP1A2 metabolic pathway in female guinea pigs. This may have clinical implications for drug dosing in female methamphetamine users of reproductive age.


Subject(s)
Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP3A/metabolism , Liver/drug effects , Liver/metabolism , Methamphetamine/administration & dosage , Animals , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/blood , Central Nervous System Stimulants/toxicity , Cytochrome P-450 CYP1A2/genetics , Female , Guinea Pigs , Humans , Metabolic Clearance Rate , Metabolic Networks and Pathways/drug effects , Methamphetamine/blood , Methamphetamine/toxicity , Models, Animal , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1123-R1153, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30325659

ABSTRACT

Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.


Subject(s)
Fetus/metabolism , Placenta/metabolism , Pregnancy Outcome , Sheep/physiology , Animals , Disease Models, Animal , Female , Humans , Maternal-Fetal Exchange/physiology , Pregnancy , Pregnancy, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...