Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(45): eadi2606, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37948528

ABSTRACT

Accurate modeling and prediction of damage induced by dynamic loading in materials have long proved to be a difficult task. Examination of postmortem recovered samples cannot capture the time-dependent evolution of void nucleation and growth, and attempts at analytical models are hindered by the necessity to make simplifying assumptions, because of the lack of high-resolution, in situ, time-resolved experimental data. We use absorption contrast imaging to directly image the time evolution of spall damage in metals at ∼1.6-µm spatial resolution. We observe a dependence of void distribution and size on time and microstructure. The insights gained from these data can be used to validate and improve dynamic damage prediction models, which have the potential to lead to the design of superior damage-resistant materials.

5.
Nano Lett ; 7(2): 426-32, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17298011

ABSTRACT

We present a comparative study of thermomechanical properties of nano-polycrystalline nickel (nano-Ni) and micrometer-polycrystalline nickel (micron-Ni) by in situ high pressure-temperature (P-T) diffraction experiments. The yield strength of 2.35 GPa for the nano-Ni measured under high-pressure triaxial compression is more than three times that of the micron-Ni value. Contrary to tensile experiments of uniaxial loading, we observe significant work-hardening for the nano-Ni in high-pressure plastic deformation stage, whereas the micron-Ni experiences minor high-pressure work-softening and considerable energy dissipation into heat. The significantly reduced energy dissipation for the nano-Ni during the loading-unloading cycle indicates that the nanostructured materials can endure much greater mechanical fatigue in cyclic loadings. The nano-Ni exhibits steady grain growth during bulk plastic deformation at high-pressure loading, and drastic stress reduction and grain growth occur during the high P-T cycle. Our experiments utilized novel approaches to comparatively study micro- and nanostructured materials revealing recoverability of elastic/plastic deformations, strain corrections by diffraction elasticity ratio, and identifying dominances of stress relaxation, grain growth, and intrinsic residual stresses. The results should be of considerable interest to the fields of materials science, condensed matter, and computational physics.

SELECTION OF CITATIONS
SEARCH DETAIL
...