Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(2): e0171634, 2017.
Article in English | MEDLINE | ID: mdl-28158282

ABSTRACT

Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies.


Subject(s)
Invertebrates/physiology , Rivers , Animals , Ecology , Ecosystem , Environmental Monitoring , Power Plants
2.
Evolution ; 70(10): 2171-2185, 2016 10.
Article in English | MEDLINE | ID: mdl-27502055

ABSTRACT

The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity.


Subject(s)
Biodiversity , Ecosystem , Genetic Speciation , Adaptation, Physiological , Animals , Selection, Genetic , Tropical Climate
3.
Evolution ; 70(11): 2485-2503, 2016 11.
Article in English | MEDLINE | ID: mdl-27565121

ABSTRACT

Sperm cells provide essential, if usually diminutive, ingredients to successful sexual reproduction. Despite this conserved function, sperm competition and coevolution with female traits can drive spectacular morphological change in these cells. Here, we characterize four repeated instances of convergent evolution of sperm gigantism in Caenorhabditis nematodes using phylogenetic comparative methods on 26 species. Species at the extreme end of the 50-fold range of sperm-cell volumes across the genus have sperm capable of comprising up to 5% of egg-cell volume, representing severe attenuation of the magnitude of anisogamy. Furthermore, we uncover significant differences in mean and variance of sperm size among genotypes, between sexes, and within and between individuals of identical genotypes. We demonstrate that the developmental basis of sperm size variation, both within and between species, becomes established during an early stage of sperm development at the formation of primary spermatocytes, while subsequent meiotic divisions contribute little further sperm size variability. These findings provide first insights into the developmental determinants of inter- and intraspecific sperm size differences in Caenorhabditis. We hypothesize that life history and ecological differences among species favored the evolution of alternative sperm competition strategies toward either many smaller sperm or fewer larger sperm.


Subject(s)
Caenorhabditis/genetics , Cell Size , Evolution, Molecular , Genetic Variation , Spermatozoa/cytology , Animals , Caenorhabditis/cytology , Female , Male
4.
RNA ; 22(7): 968-78, 2016 07.
Article in English | MEDLINE | ID: mdl-27140965

ABSTRACT

MicroRNAs (miRNAs) comprise a class of short noncoding RNA molecules that play diverse developmental and physiological roles by controlling mRNA abundance and protein output of the vast majority of transcripts. Despite the importance of miRNAs in regulating gene function, we still lack a complete understanding of how miRNAs themselves are transcriptionally regulated. To fill this gap, we predicted regulatory sequences by searching for abundant short motifs located upstream of miRNAs in eight species of Caenorhabditis nematodes. We identified three conserved motifs across the Caenorhabditis phylogeny that show clear signatures of purifying selection from comparative genomics, patterns of nucleotide changes in motifs of orthologous miRNAs, and correlation between motif incidence and miRNA expression. We then validated our predictions with transgenic green fluorescent protein reporters and site-directed mutagenesis for a subset of motifs located in an enhancer region upstream of let-7 We demonstrate that a CT-dinucleotide motif is sufficient for proper expression of GFP in the seam cells of adult C. elegans, and that two other motifs play incremental roles in combination with the CT-rich motif. Thus, functional tests of sequence motifs identified through analysis of molecular evolutionary signatures provide a powerful path for efficiently characterizing the transcriptional regulation of miRNA genes.


Subject(s)
Caenorhabditis/genetics , MicroRNAs/genetics , RNA, Helminth/genetics , Regulatory Sequences, Nucleic Acid , Animals , Gene Expression Regulation , Phylogeny
5.
PLoS One ; 11(5): e0154271, 2016.
Article in English | MEDLINE | ID: mdl-27191717

ABSTRACT

The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon-Salmo salar, number of >1 year old Atlantic salmon, number of brown trout-Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies.


Subject(s)
Biodiversity , Ecosystem , Fishes , Power Plants , Rivers , Animals , Environmental Monitoring , Geography
6.
Proc Biol Sci ; 281(1778): 20133055, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24430852

ABSTRACT

Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.


Subject(s)
Biological Evolution , Caenorhabditis elegans/physiology , Animals , Caenorhabditis elegans/genetics , Genetic Association Studies , Life Cycle Stages , Mating Preference, Animal , Models, Animal , Reproduction
7.
Ecol Lett ; 15(9): 955-62, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22690742

ABSTRACT

In sexual populations, gene-flow between niches is predicted to have differential consequences on local adaptation contingent upon the nature of trade-offs underlying local adaptation. Sex retards local adaptation if antagonistic pleiotropy underlies trade-offs, but facilitates adaptation if mutation accumulation underlies trade-offs. We evaluate the effect of sex in heterogeneous environments by manipulating gene-flow between two niches in sexual and asexual populations using steady-state microcosm experiments with yeast. We find that only sex in the presence of gene-flow promotes simultaneous local adaptation to different niches, presumably as this exposes mutations neutrally accrued in alternate niches to selection. This finding aligns with work showing mutation accumulation underlies trade-offs to local adaptation in asexual microbes, and with inferences of divergence in the presence of gene-flow in natural sexual populations. This experiment shows that sex may be of benefit in heterogeneous environments, and thus helps explain why sex has been maintained more generally.


Subject(s)
Adaptation, Biological , Gene Flow , Reproduction, Asexual/genetics , Yeasts/genetics , Biological Evolution , Ecosystem , Models, Genetic , Mutation , Yeasts/growth & development
8.
BMC Evol Biol ; 12: 43, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22462622

ABSTRACT

BACKGROUND: The maintenance of sexuality is a classic problem in evolutionary biology because it is a less efficient mode of reproduction compared with asexuality; however, many organisms are sexual. Theoretical work suggests sex facilitates natural selection, and experimental data support this. However, there are fewer experimental studies that have attempted to determine the mechanisms underlying the advantage of sex. Two main classes of hypotheses have been proposed to explain its advantage: detrimental mutation clearance and beneficial mutation accumulation. Here we attempt to experimentally differentiate between these two classes by evolving Saccharomyces cerevisiae populations that differ only in their ability to undergo sex, and also manipulate mutation rate. We cannot manipulate the types of mutation that occur, but instead propagate populations in both stressful and permissive environments and assume that the extent of detrimental mutation clearance and beneficial mutation incorporation differs between them. RESULTS: After 300 mitotic generations interspersed with 11 rounds of sex we found there was no change or difference in fitness between sexuals and asexuals propagated in the permissive environment, regardless of mutation rate. Sex conferred a greater extent of adaptation in the stressful environment, and wild-type and elevated mutation rate sexual populations adapted equivalently. However, the asexual populations with an elevated mutation rate appeared more retarded in their extent of adaptation compared to asexual wild-type populations. CONCLUSIONS: Sex provided no advantage in the permissive environment where beneficial mutations were rare. We could not evaluate if sex functioned to clear detrimental mutations more effectively or not here as no additional fitness load was observed in the mutator populations. However, in the stressful environment, where detrimental mutations were likely of more consequence, and where beneficial mutations were apparent, sex provided an advantage. In the stressful environment asexuals were increasingly constrained in their extent of adaptation with increasing mutation rate. Sex appeared to facilitate adaptation not just by more rapidly combining beneficial mutations, but also by unlinking beneficial from detrimental mutations: sex allowed selection to operate on both types of mutations more effectively compared to asexual populations.


Subject(s)
Adaptation, Physiological/genetics , Genetic Fitness , Mutation Rate , Mutation , Saccharomyces cerevisiae/genetics , Evolution, Molecular , MutS Homolog 2 Protein/genetics , Reproduction, Asexual/genetics , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...