Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 424(Pt C): 127625, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34857400

ABSTRACT

The ubiquitous and growing global reliance on rare earth elements (REEs) for modern technology and the need for reliable domestic sources underscore the rising trend in REE-related research. Adsorption-based methods for REE recovery from liquid waste sources are well-positioned to compete with those of solvent extraction, both because of their expected lower negative environmental impact and simpler process operations. Functionalized silica represents a rising category of low cost and stable sorbents for heavy metal and REE recovery. These materials have collectively achieved high capacity and/or high selective removal of REEs from ideal solutions and synthetic or real coal wastewater and other leachate sources. These sorbents are competitive with conventional materials, such as ion exchange resins, activated carbon; and novel polymeric materials like ion-imprinted particles and metal organic frameworks (MOFs). This critical review first presents a data mining analysis for rare earth element recovery publications indexed in Web of science, highlighting changes in REE recovery research foci and confirming the sharply growing interest in functionalized silica sorbents. A detailed examination of sorbent formulation and operation strategies to selectively separate heavy (HREE), middle (MREE), and light (LREE) REEs from the aqueous sources is presented. Selectivity values for sorbents were largely calculated from available figure data and gauged the success of the associated strategies, primarily: (1) silane-grafted ligands, (2) impregnated ligands, and (3) bottom-up ligand/silica hybrids. These were often accompanied by successful co-strategies, especially bite angle control, site saturation, and selective REE elution. Recognizing the need to remove competing fouling metals to achieve purified REE "baskets," we highlight techniques for eliminating these species from acid mine drainage (AMD) and suggest a novel adsorption-based process for purified REE extraction that could be adapted to different water systems.


Subject(s)
Metals, Rare Earth , Silicon Dioxide , Acids , Adsorption , Coal
2.
ACS Appl Mater Interfaces ; 11(41): 38336-38346, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31545021

ABSTRACT

Pelletization of basic immobilized amine sorbent (BIAS) particles is required to improve their mechanical strength and facilitate their practical CO2 capture application under fixed or dynamic reactor conditions. Herein, we utilized two methods to prepare amine-functionalized BIAS pellets. Method (ii-a) involved combining latex polychloroprene (PC)/polyamine solutions with fly ash (FA)/BIAS powder to form sorbent pellets. Alternatively, method (ii-b) entailed shaping and drying wet pastes of binder solution plus FA/SiO2 powder into pellet supports. These supports were then functionalized with leach-resistant polyethylenimine MW = 800 (PEI800)/N-N-diglycidyl-4-glycidyloxyaniline (tri-epoxide cross-linker, E3) or ethylenamine E100/E3 mixtures. All pellets were screened for CO2 capture by thermogravimetric analysis (dry 14% CO2/N2, 55-75 °C), H2O stability by accelerated water washing, and mechanical strength by crush and ball-mill attrition testing. The mechanism of superior method (ii-b) pellet formation was uncovered by N2 physisorption measurements, diffuse reflectance infrared Fourier transform spectroscopy, and scanning electron microscopy. Extended fixed bed testing of optimum E3/PEI800-0.13/1 pellets under practical conditions revealed complete CO2 capture stability of 1.5 mmol CO2/g after 48 h of continuous steam exposure (7.2% H2O/He, 105 °C) and minimal 14.6% loss in capacity after 75 hours of combined CO2 capture cycling and steam treating (48 h). This slight oxidative degradation could be alleviated by incorporating a K2CO3 antioxidant into the pellet formulation. Overall, the robust physiochemical properties of the polyamine/cross-linker method (ii-b) pellets confirm their suitability for pilot-scale testing.

3.
ChemSusChem ; 11(23): 4114-4122, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30277652

ABSTRACT

Time-consuming thermogravimetric analysis (TGA) decomposition study is a typical practice to assess the stability of fresh and water-treated basic immobilized amine sorbents (BIAS)/catalysts. This work presents a faster and more precise spectroscopic UV/Vis/Cu2+ sorbent screening technique that quantifies aqueous amines washed from the BIAS by using UV-active amine/Cu2+ complexes. Six BIAS-based catalysts, containing different amine species and a crosslinker within silica, were treated with ultrapure water and then analyzed for their CO2 capture performance and amine leach resistance/stability by using TGA (catalysts, approximately 4 h) and UV/Vis/Cu2+ techniques (wash solution, few minutes). A comparative analysis revealed that directly quantifying washed amines with UV/Vis/Cu2+ is 9-127 times more precise than indirect testing of the sorbents by TGA. Similar trends in the H2 O stability profiles of the catalysts [organic content retained values (OCR)] were reported by both analysis methods, allowing UV/Vis/Cu2+ to replace TGA for quantifying unstable leached amines. The UV/Vis/Cu2+ OCR results could be used to predict the CO2 -capture stability profile of the sorbents, confirming the reliability of this technique to rapidly screen catalyst stability and performance.

4.
J Phys Chem B ; 121(27): 6699-6707, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28621535

ABSTRACT

Separating oil from saltwater is a process relevant to some industries and may be aided by bubble and froth generation. Simulating saltwater-air interfaces adsorbed with surfactants and oil molecules can assist in understanding froth stability to improve separation. Combining with surface tension experimental measurements, in this work we employ molecular dynamics with a united-atom force field to linear alkane oil and three surfactant frothers, methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether (EGBE), to investigate their synergistic behaviors for oil separation. The interfacial phenomena were measured for a range of frother surface coverages on saltwater. Density profiles of the hydrophilic and hydrophobic portions of the frothers show an expected orientation of alcohol groups adsorbing to the polar water. A decrease in surface tension with increasing surface coverage of MIBC and terpineol was observed and reflected in experiments where the frother concentration increased. Relations between surface coverage and bulk concentration were observed by comparing the surface tension decreases. Additionally, a range of oil surface coverages was explored when the interface has a thin layer of adsorbed frother molecules. The obtained results indicate that an increase in surface coverage of oil molecules led to an increase in surface tension for all frother types and the pair correlation functions depicted MIBC and terpineol as having higher distributions with water at closer distances than with oil.

5.
ACS Appl Mater Interfaces ; 9(21): 18283-18294, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28498653

ABSTRACT

Recovering aqueous rare earth elements (REEs) from domestic water sources is one key strategy to diminish the U.S.'s foreign reliance of these precious commodities. Herein, we synthesized an array of porous, amine-epoxy monolith and particle REE recovery sorbents from different polyamine, namely tetraethylenepentamine, and diepoxide (E2), triepoxide (E3), and tetra-epoxide (E4) monomer combinations via a polymer-induced phase separation (PIPS) method. The polyamines provided -NH2 (primary amine) plus -NH (secondary amine) REE adsorption sites, which were partially reacted with C-O-C (epoxide) groups at different amine/epoxide ratios to precipitate porous materials that exhibited a wide range of apparent porosities and REE recoveries/affinities. Specifically, polymer particles (ground monoliths) were tested for their recovery of La3+, Nd3+, Eu3+, Dy3+, and Yb3+ (Ln3+) species from ppm-level, model REE solutions (pH ≈ 2.4, 5.5, and 6.4) and a ppb-level, simulated acid mine drainage (AMD) solution (pH ≈ 2.6). Screening the sorbents revealed that E3/TEPA-88 (88% theoretical reaction of -NH2 plus -NH) recovered, overall, the highest percentage of Ln3+ species of all particles from model 100 ppm- and 500 ppm-concentrated REE solutions. Water swelling (monoliths) and ex situ, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (ground monoliths/particles) data revealed the high REE uptake by the optimized particles was facilitated by effective distribution of amine and hydroxyl groups within a porous, phase-separated polymer network. In situ DRIFTS results clarified that phase separation, in part, resulted from polymerization of the TEPA-E3 (N-N-diglycidyl-4-glycidyloxyaniline) species in the porogen via C-N bond formation, especially at higher temperatures. Most importantly, the E3/TEPA-88 material cyclically recovered >93% of ppb-level Ln3+ species from AMD solution in a recovery-strip-recovery scheme, highlighting the efficacy of these materials for practical applications.

6.
J Phys Chem B ; 121(13): 2788-2796, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28294617

ABSTRACT

For water treatment purposes, the separation processes involving surfactants and crude oil at seawater-air interfaces are of importance for the chemical and energy industries. Little progress has been made in understanding the nanoscale phenomena of surfactants on oily saltwater-air interfaces. This work focuses on using molecular dynamics with a united-atom force field to simulate the interface of linear alkane oil, saltwater, and air with three surfactant frothers: methyl isobutyl carbinol (MIBC), terpineol, and ethyl glycol butyl ether. For each frother, although the calculated diffusivities and viscosities are lower than the expected experimental values, our results show that diffusivity trends between each frother agree with experiments but the method cannot be applied for viscosity. Binary combinations of liquid (frother or saltwater)-air and liquid-liquid interfaces are equilibrated to study the density profiles and interfacial tensions. The calculated surface tensions of the frother-air interfaces are like that of oil-air, but lower than that of saltwater-air. Only the MIBC-air and terpineol-air interfaces agreed with our experimental measurements. For the frother-saltwater interfaces, the calculated results showed that terpineol has interfacial tensions higher than those of MIBC-saltwater. The simulated results indicate that the frother-oil systems underwent mixing such that the density profiles depicted large interfacial thicknesses.

7.
ACS Appl Mater Interfaces ; 8(20): 12780-91, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27145200

ABSTRACT

Hybrid Class 1/Class 2 supported amine CO2 sorbents demonstrate superior performance under practical steam conditions, yet their amine immobilization and stabilization mechanisms are unclear. Uncovering the interactions responsible for the sorbents' robust features is critical for further improvements and can facilitate practical applications. We employ solid state (29)Si CP-MAS and 2-D FSLG (1)H-(13)C CP HETCOR NMR spectroscopies to probe the overall molecular interactions of aminosilane/silica, polyamine [poly(ethylenimine), PEI]/silica, and hybrid aminosilane/PEI/silica sorbents. A unique, sequential impregnation sorbent preparation method is executed in a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) setup to decouple amine binding mechanisms at the amine-silica interface from those within bulk amine layers. These mechanisms are correlated with each sorbents' resistance to accelerated liquid H2O and TGA steam treatments (H2O stability) and to oxidative degradation (thermal stability). High percentages of CO2 capture retained (PCR) and organic content retained (OCR) values after H2O testing of N-(3-(trimethoxysilyl)propyl)ethylenediamine (TMPED)/PEI and (3-aminopropyl)trimethoxysilane (APTMS)/PEI hybrid sorbents are associated with a synergistic stabilizing effect of the amine species observed during oxidative degradation (thermal gravimetric analysis-differential scanning calorimetry, TGA-DSC). Solid state NMR spectroscopy reveals that the synergistic effect of the TMPED/PEI mixture is manifested by the formation of hydrogen-bonded PEI-NH2···NH2-TMPED and PEI-NH2···HO-Si/O-Si-O (TMPED, T(2)) linkages within the sorbent. DRIFTS further determines that PEI enhances the grafting of TMPED to silica and that PEI is dispersed among a stable network of polymerized TMPED in the bulk, utilizing H-bonded linkages. These findings provide the scientific basis for establishing a Class 4 category for aminosilane/polyamine/silica hybrid sorbents.

8.
ChemSusChem ; 8(12): 2041-5, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26013690

ABSTRACT

Rapid testing of hydrophilic and hydrophobic basic immobilized amine sorbents (BIAS) for CO2 capture stability under practical conditions was achieved by direct contact of the sorbents with flowing liquid water. Losses in both CO2 capture capacity and amine content of sorbents after exposure to 0.5 mL min(-1) of H2 O at 25 °C for 40 min followed similar trends as losses observed after exposure to N2 /steam (105 °C, 7 % H2 O) for 10 h. We also found that hydrophobic TMPED helped stabilize sorbents to H2 O, which was confirmed by DRIFTS and combined TGA-DSC.


Subject(s)
Amines/chemistry , Carbon Dioxide/chemistry , Steam , Adsorption , Carbon Dioxide/isolation & purification , Hydrophobic and Hydrophilic Interactions , Time Factors
9.
ChemSusChem ; 8(3): 452-5, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25510438

ABSTRACT

The National Energy Technology Laboratory (NETL) is examining the use of solid sorbents for CO2 removal from coal-fired power plant flue gas streams. An aminated sorbent (previously reported by the NETL) is tested for stability by cyclic exposure to simulated flue gas and subsequent regeneration for 100 cycles. Each cycle was quantified using a traced gas in the simulated flue gas monitored by a mass spectrometer, which allowed for rapid determination of the capacity.


Subject(s)
Carbon Dioxide/chemistry , Carbon Dioxide/isolation & purification , Silicon Dioxide/chemistry , Adsorption , Amination , Coal , Drug Stability , Hot Temperature , Power Plants
10.
Phys Chem Chem Phys ; 15(12): 4355-66, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23416704

ABSTRACT

A statistical methodology was applied to the simultaneous calibration and validation of thermodynamic models for the uptake of CO2 in mesoporous silica-supported amines. The methodology is Bayesian, and follows the procedure introduced by Kennedy and O'Hagan. One key aspect of the application presented is the use of quantum chemical calculations to define prior probability distributions for physical model parameters. Inclusion of this prior information proved to be crucial to the identifiability of model parameters against experimental thermogravimetric data. Through the statistical analysis, a quantitative assessment of the accuracy of various quantum chemical methods is produced. Another important aspect of the current approach is the conditioning of the model form discrepancy - a critical component of the Kennedy and O'Hagan methodology - to the experimental data in such a mannner that it becomes an implicit function of the model parameters and thereby connected with the posterior distribution. It is shown that the inclusion of prior information in the analysis leads to a shifting of uncertainty from the posterior distribution for model parameters to this conditioned model form discrepancy. Prospects for more accurate model predictions and propagation of uncertainty in upscaling and extrapolation through a "model-plus-discrepancy" approach are discussed. The synthesis methods and thermogravimetric characterization of hybrid grafted/impregnated mesoporous silica-supported amine sorbents are presented, along with the details of the quantum chemical study, which shows that a carbamic acid-base acceptor complex is the most stable form of adsorbed CO2 in both alkanol- and ethyleneamines.

11.
ChemSusChem ; 4(5): 628-35, 2011 May 23.
Article in English | MEDLINE | ID: mdl-21548105

ABSTRACT

Silica supported poly(ethyleneimine) (PEI) materials are prepared via impregnation and demonstrated to be promising adsorbents for CO(2) capture from ultra-dilute gas streams such as ambient air. A prototypical class 1 adsorbent, containing 45 wt% PEI (PEI/silica), and two new modified PEI-based aminosilica adsorbents, derived from PEI modified with 3-aminopropyltrimethoxysilane (A-PEI/silica) or tetraethyl orthotitanate (T-PEI/silica), are prepared and characterized by using thermogravimetric analysis and FTIR spectroscopy. The modifiers are shown to enhance the thermal stability of the polymer-oxide composites, leading to higher PEI decomposition temperatures. The modified adsorbents present extremely high CO(2) adsorption capacities under conditions simulating ambient air (400 ppm CO(2) in inert gas), exceeding 2 mol(CO (2)) kg(sorbent)(-1), as well as enhanced adsorption kinetics compared to conventional class 1 sorbents. The new adsorbents show excellent stability in cyclic adsorption-desorption operations, even under dry conditions in which aminosilica adsorbents are known to lose capacity due to urea formation. Thus, the adsorbents of this type can be considered promising materials for the direct capture of CO(2) from ultra-dilute gas streams such as ambient air.


Subject(s)
Air , Carbon Dioxide/chemistry , Carbon Dioxide/isolation & purification , Polyethyleneimine/chemistry , Adsorption , Kinetics , Porosity , Silicon Dioxide/chemistry , Surface Properties
12.
Chem Commun (Camb) ; 47(6): 1719-21, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21127800

ABSTRACT

Nano-layered sorbents for CO(2) capture, for the first time, were developed using layer-by-layer nanoassembly. A CO(2)-adsorbing polymer and a strong polyelectrolyte were alternately immobilized within porous particles. The developed sorbents had fast CO(2) adsorption and desorption properties and their CO(2) capture capacity increased with increasing nano-layers of the CO(2)-adsorbing polymer.


Subject(s)
Air Pollution/prevention & control , Carbon Dioxide/chemistry , Nanoparticles/chemistry , Particulate Matter/chemistry , Polymers/chemistry , Adsorption , Carbon Dioxide/isolation & purification , Particle Size , Porosity , Surface Properties , Temperature , Time Factors
13.
ChemSusChem ; 3(8): 948-56, 2010 Aug 23.
Article in English | MEDLINE | ID: mdl-20730982

ABSTRACT

The CO(2) capture capacities for typical flue gas capture and regeneration conditions of two tertiary amidine N-methyltetrahydropyrimidine (MTHP) derivatives supported on activated carbon were determined through temperature-controlled packed-bed reactor experiments. Adsorption-desorption experiments were conducted at initial adsorption temperatures ranging from 29 degrees C to 50 degrees C with temperature-programmed regeneration under an inert purge stream. In addition to the capture capacity of each amine, the efficiencies at which the amidines interact with CO(2) were determined. Capture capacities were obtained for 1,5-diazo-bicyclo[4.3.0]non-5-ene (DBN) and 1,8-diazobicyclo[5.4.0]-undec-7-ene (DBU) supported on activated carbon at a loading of approximately 2.7 mol amidine per kg of sorbent. Moisture was found to be essential for CO(2) capture on the amidines, but parasitic moisture sorption on the activated carbon ultimately limited the capture capacities. DBN was shown to have a higher capture capacity of 0.8 mol CO(2) per kg of sorbent and an efficiency of 0.30 mol CO(2) per mol of amidine at an adsorption temperature of 29 degrees C compared to DBU. The results of these experiments were then used in conjunction with a single-site adsorption model to derive the Gibbs free energy for the capture reaction, which can provide information about the suitability of the sorbent under different operating conditions.


Subject(s)
Amidines/chemistry , Carbon Dioxide/chemistry , Carbon Dioxide/isolation & purification , Carbon Sequestration , Carbon/chemistry , Adsorption , Amines/chemistry , Humidity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...