Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
4.
J Neuropathol Exp Neurol ; 79(2): 144-162, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31851313

ABSTRACT

The neuropathology associated with cognitive decline in military personnel exposed to traumatic brain injury (TBI) and chronic stress is incompletely understood. Few studies have examined clinicopathologic correlations between phosphorylated-tau neurofibrillary tangles, ß-amyloid neuritic plaques, neuroinflammation, or white matter (WM) lesions, and neuropsychiatric disorders in veterans. We describe clinicopathologic findings in 4 military veterans with early-onset dementia (EOD) who had varying histories of blunt- and blast-TBI, cognitive decline, behavioral abnormalities, post-traumatic stress disorder, suicidal ideation, and suicide. We found that pathologic lesions in these military-EOD cases could not be categorized as classic Alzheimer's disease (AD), chronic traumatic encephalopathy, traumatic axonal injury, or other well-characterized clinicopathologic entities. Rather, we observed a mixture of polypathology with unusual patterns compared with pathologies found in AD or other dementias. Also, ultrahigh resolution ex vivo MRI in 2 of these 4 brains revealed unusual patterns of periventricular WM injury. These findings suggest that military-EOD cases are associated with atypical combinations of brain lesions and distribution rarely seen in nonmilitary populations. Future prospective studies that acquire neuropsychiatric data before and after deployments, as well as genetic and environmental exposure data, are needed to further elucidate clinicopathologic correlations in military-EOD.


Subject(s)
Brain/pathology , Dementia/pathology , Age of Onset , Aged , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Dementia/complications , Humans , Membrane Glycoproteins , Middle Aged , Plaque, Amyloid/complications , Plaque, Amyloid/pathology , Receptors, Interleukin-1 , Veterans
5.
Genetics ; 208(4): 1513-1522, 2018 04.
Article in English | MEDLINE | ID: mdl-29467169

ABSTRACT

Several in vitro studies have suggested that canonical microRNA (miRNA) biogenesis requires the DICER cofactors TARBP2 and PRKRA for processing of pre-miRNAs to mature miRNAs. To investigate the roles of TARBP2 and PRKRA in miRNA biogenesis in vivo, and to determine possible functional redundancy, we first compared the phenotypes of Tarbp2 and Prkra single and double mutants. In contrast to Dicer -/- embryos, which die by embryonic day 7.5 (E7.5), single Tarbp2 -/- and Prkra -/- mice survive beyond E7.5 and either die perinatally or survive and exhibit cranial/facial abnormalities, respectively. In contrast, only a few Tarbp2 -/- ; Prkra -/- double mutants survived beyond E12.5, suggesting genetic redundancy between Tarbp2 and Prkra during embryonic development. Sequencing of miRNAs from single-mutant embryos at E15.5 revealed changes in abundance and isomiR type in Tarbp2 -/- , but not Prkra -/- , embryos, demonstrating that TARBP2, but not PRKRA, functions in miRNA biogenesis of a subclass of miRNAs, and suggesting that functional redundancy between TARBP2 and PRKRA does not involve miRNA biogenesis.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental , MicroRNAs/metabolism , RNA-Binding Proteins/genetics , Alleles , Animals , Female , Genes, Lethal , Genetic Association Studies , Genotype , Male , Mice , Mice, Knockout , MicroRNAs/genetics , Phenotype , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...