Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Surf Sci ; 6342023 Oct 15.
Article in English | MEDLINE | ID: mdl-37389357

ABSTRACT

Laparoscopes can suffer from fogging and contamination difficulties, resulting in a reduced field of view during surgery. A series of diamond-like carbon films, doped with SiO, were produced by pulsed laser deposition for evaluation as biocompatible, antifogging coatings. DLC films doped with SiO demonstrated hydrophilic properties with water contact angles under 40°. Samples subjected to plasma cleaning had improved contact angle results, with values under 5°. Doping the DLC films with SiO led to an average 40% decrease in modulus and 60% decrease in hardness. Hardness of the doped films, 12.0 - 13.2 GPa, was greater than that of the uncoated fused silica substrate, 9.2 GPa. The biocompatibility was assessed through CellTiter-Glo assays, with the films demonstrating statistically similar levels of cell viability when compared to the control media. The absence of ATP released by blood platelets in contact with the DLC coatings suggests in vivo hemocompatibility. The SiO doped films displayed improved transparency levels in comparison to undoped films, achieving up to an average of 80% transmission over the visible spectrum and an attenuation coefficient of 1.1 × 104 cm-1 at the 450 nm wavelength. The SiO doped DLC films show promise as a method of fog prevention for laparoscopes.

2.
Nat Commun ; 8: 14358, 2017 02 06.
Article in English | MEDLINE | ID: mdl-28165477

ABSTRACT

Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin-strain interaction that has not been previously studied. We experimentally demonstrate that the spin-strain coupling in the excited state is 13.5±0.5 times stronger than the ground state spin-strain coupling. We then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy.

3.
Nat Commun ; 8: 16166, 2017.
Article in English | MEDLINE | ID: mdl-31305779

ABSTRACT

[This corrects the article DOI: 10.1038/ncomms14358.].

4.
Nano Lett ; 16(12): 7842-7848, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960518

ABSTRACT

We report on a nanoinfrared (IR) imaging study of ultraconfined plasmonic hotspots inside graphene nanobubbles formed in graphene/hexagonal boron nitride (hBN) heterostructures. The volume of these plasmonic hotspots is more than one-million-times smaller than what could be achieved by free-space IR photons, and their real-space distributions are controlled by the sizes and shapes of the nanobubbles. Theoretical analysis indicates that the observed plasmonic hotspots are formed due to a significant increase of the local plasmon wavelength in the nanobubble regions. Such an increase is attributed to the high sensitivity of graphene plasmons to its dielectric environment. Our work presents a novel scheme for plasmonic hotspot formation and sheds light on future applications of graphene nanobubbles for plasmon-enhanced IR spectroscopy.

5.
Opt Express ; 23(23): 29978-92, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26698479

ABSTRACT

Understanding the formation of electrodynamically interacting assemblies of metal nanoparticles requires accurate computational methods for determining the forces and propagating trajectories. However, since computation of electromagnetic forces occurs on attosecond to femtosecond timescales, simulating the motion of colloidal nanoparticles on milliseconds to seconds timescales is a challenging multi-scale computational problem. Here, we present a computational technique for performing accurate simulations of laser-illuminated metal nanoparticles. In the simulation, we self-consistently combine the finite-difference time-domain method for electrodynamics (ED) with Langevin dynamics (LD) for the particle motions. We demonstrate the ED-LD method by calculating the 3D trajectories of a single 100-nm-diameter Ag nanoparticle and optical trapping and optical binding of two and three 150-nm-diameter Ag nanoparticles in simulated optical tweezers. We show that surface charge on the colloidal metal nanoparticles plays an important role in their optically driven self-organization. In fact, these simulations provide a more complete understanding of the assembly of different structures of two and three Ag nanoparticles that have been observed experimentally, demonstrating that the ED-LD method will be a very useful tool for understanding the self-organization of optical matter.

6.
J Phys Condens Matter ; 25(20): 205402, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23603535

ABSTRACT

Eu(2+)-doped fluorochlorozirconate (FCZ) glasses and glass ceramics, which are being developed for medical and photovoltaic applications, have been analysed by Mössbauer spectroscopy. The oxidation state and chemical environment of the europium ions, which are important for the performance of these materials, were investigated. Routes for maximizing the divalent europium content were also investigated. By using EuCl2 instead of EuF2 in the starting material a fraction of about 90% of the europium was maintained in the Eu(2+) state as opposed to about 70% when using EuF2. The glass ceramics produced by subsequent thermal processing contain BaCl2 nanocrystals in which Eu(2+) is incorporated, as shown by the narrower linewidth in the Mössbauer spectrum. Debye temperatures of 147 K and 186 K for Eu(2+) and Eu(3+), respectively, were determined from temperature dependent Mössbauer measurements. The f-factors were used to obtain the Eu(2+)/Eu(3+) ratio from the area ratio of the corresponding absorption lines.


Subject(s)
Ceramics/chemistry , Europium/chemistry , Glass/chemistry , Luminescence , Radiography , Spectroscopy, Mossbauer , Zirconium/chemistry , Oxidation-Reduction , Temperature
7.
Phys Rev Lett ; 106(9): 095501, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21405632

ABSTRACT

We demonstrate irreversible continuous filament formation when a weak laser focus is positioned near the edge of an evaporating colloidal droplet containing carbon and gold nanoparticles. Optical trapping, hydrothermal, and chemical interactions lead to controlled colloidal synthesis of stable, irreversible mesoscale filaments of arbitrary shape and size. Mechanisms for this optically directed assembly are discussed with fluid dynamics, molecular dynamics, and lattice kinetic Monte Carlo calculations.

8.
Nanotechnology ; 20(43): 434011, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19801763

ABSTRACT

We describe a class of plasmonic crystal that consists of square arrays of nanoposts formed by soft nanoimprint lithography. As sensors, these structure show somewhat higher bulk refractive index sensitivity for aqueous solutions in the visible wavelength range as compared to plasmonic crystals consisting of square arrays of nanowells with similar dimensions, with opposite trends for the case of surface bound layers in air. Three-dimensional finite-difference time-domain simulations quantitatively capture the key features and assist in the interpretation of these and related results.

9.
Opt Express ; 17(4): 2334-40, 2009 Feb 16.
Article in English | MEDLINE | ID: mdl-19219136

ABSTRACT

Surface plasmon polaritons (SPPs) and Rayleigh anomalies (RAs) are two characteristic phenomena exhibited by periodic grating structures made of plasmonic materials. For Au subwavelength hole arrays, SPPs and RAs from opposite sides of the film can interact under certain conditions to produce highly intense, narrow spectral features called RA-SPP resonances. This paper reports how RA-SPP effects can be achieved in subwavelength hole arrays of Pd, a weak plasmonic material. Well-defined resonances are observed in measured and simulated optical transmission spectra with RASPP peaks as narrow as 45 nm (FWHM). Dispersion diagrams compiled from angle-resolved spectra show that RA-SPP resonances in Pd hole arrays shift in wavelength but do not decrease significantly in amplitude as the excitation angle is increased, in contrast with RA-SPP peaks in Au hole arrays. The apparent generality of the RA-SPP effect enables a novel route to optimize resonances in non-traditional plasmonic media.


Subject(s)
Artifacts , Gold/chemistry , Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Palladium/chemistry , Refractometry/methods , Computer Simulation , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...