Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(4): e2208536120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36656858

ABSTRACT

Actin cytoskeleton force generation, sensing, and adaptation are dictated by the bending and twisting mechanics of filaments. Here, we use magnetic tweezers and microfluidics to twist and pull individual actin filaments and evaluate their response to applied loads. Twisted filaments bend and dissipate torsional strain by adopting a supercoiled plectoneme. Pulling prevents plectoneme formation, which causes twisted filaments to sever. Analysis over a range of twisting and pulling forces and direct visualization of filament and single subunit twisting fluctuations yield an actin filament torsional persistence length of ~10 µm, similar to the bending persistence length. Filament severing by cofilin is driven by local twist strain at boundaries between bare and decorated segments and is accelerated by low pN pulling forces. This work explains how contractile forces generated by myosin motors accelerate filament severing by cofilin and establishes a role for filament twisting in the regulation of actin filament stability and assembly dynamics.


Subject(s)
Actin Cytoskeleton , Cytoskeleton , Actin Cytoskeleton/metabolism , Cytoskeleton/metabolism , Actin Depolymerizing Factors/metabolism , Myosins/metabolism , Protein Binding , Actins/metabolism
2.
Nucleic Acids Res ; 50(7): 3998-4011, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35286399

ABSTRACT

The DEAD-box protein Dbp5 is essential for RNA export, which involves regulation by the nucleoporins Gle1 and Nup159 at the cytoplasmic face of the nuclear pore complex (NPC). Mechanistic understanding of how these nucleoporins regulate RNA export requires analyses of the intrinsic and activated Dbp5 ATPase cycle. Here, kinetic and equilibrium analyses of the Saccharomyces cerevisiae Gle1-activated Dbp5 ATPase cycle are presented, indicating that Gle1 and ATP, but not ADP-Pi or ADP, binding to Dbp5 are thermodynamically coupled. As a result, Gle1 binds Dbp5-ATP > 100-fold more tightly than Dbp5 in other nucleotide states and Gle1 equilibrium binding of ATP to Dbp5 increases >150-fold via slowed ATP dissociation. Second, Gle1 accelerated Dbp5 ATPase activity by increasing the rate-limiting Pi release rate constant ∼20-fold, which remains rate limiting. These data show that Gle1 activates Dbp5 by modulating ATP binding and Pi release. These Gle1 activities are expected to facilitate ATPase cycling, ensuring a pool of ATP bound Dbp5 at NPCs to engage RNA during export. This work provides a mechanism of Gle1-activation of Dbp5 and a framework to understand the joint roles of Gle1, Nup159, and other nucleoporins in regulating Dbp5 to mediate RNA export and other Dbp5 functions in gene expression.


Subject(s)
DEAD-box RNA Helicases , Nuclear Pore Complex Proteins/metabolism , Nucleocytoplasmic Transport Proteins , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Nuclear Pore Complex Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Phosphates/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
3.
Sci Adv ; 7(51): eabk1378, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34919424

ABSTRACT

Recent years have seen compelling demonstrations of the importance of behavioral state on sensory processing and attention. Arousal plays a dominant role in controlling brain-wide neural activity patterns, particularly through modulation by norepinephrine. Noradrenergic brainstem nuclei, including locus coeruleus, can be activated by stimuli of multiple sensory modalities and broadcast modulatory signals via axonal projections throughout the brain. This organization might suggest proportional brain-wide norepinephrine release during states of heightened vigilance. Here, however, we have found that low-intensity, nonarousing visual stimuli enhanced vigilance-dependent noradrenergic signaling locally in visual cortex, revealed using dual-site fiber photometry to monitor noradrenergic Ca2+ responses of astroglia simultaneously in cerebellum and visual cortex and two-photon microscopy to monitor noradrenergic axonal terminal Ca2+ dynamics. Nitric oxide, following N-methyl-d-aspartate receptor activation in neuronal nitric oxide synthase-positive interneurons, mediated transient acceleration of norepinephrine-dependent astroglia Ca2+ activation. These findings reveal a candidate cortical microcircuit for sensory modality-selective modulation of attention.

4.
Curr Biol ; 31(13): 2895-2905.e7, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33989527

ABSTRACT

The primary cilium is an essential organizing center for signal transduction, and ciliary defects cause congenital disorders known collectively as ciliopathies.1-3 Primary cilia form by two pathways that are employed in a cell-type- and tissue-specific manner: an extracellular pathway in which the cilium grows out from the cell surface and an intracellular pathway in which the nascent cilium first forms inside the cell.4-8 After exposure to the external environment, cilia formed via the intracellular pathway may have distinct functional properties, as they often remain recessed within a ciliary pocket.9,10 However, the precise mechanism of intracellular ciliogenesis and its relatedness to extracellular ciliogenesis remain poorly understood. Here we show that Rab34, a poorly characterized GTPase recently linked to cilia,11-13 is a selective mediator of intracellular ciliogenesis. We find that Rab34 is required for formation of the ciliary vesicle at the mother centriole and that Rab34 marks the ciliary sheath, a unique sub-domain of assembling intracellular cilia. Rab34 activity is modulated by divergent residues within its GTPase domain, and ciliogenesis requires GTP binding and turnover by Rab34. Because Rab34 is found on assembly intermediates that are unique to intracellular ciliogenesis, we tested its role in the extracellular pathway used by polarized MDCK cells. Consistent with Rab34 acting specifically in the intracellular pathway, MDCK cells ciliate independently of Rab34 and its paralog Rab36. Together, these findings establish that different modes of ciliogenesis have distinct molecular requirements and reveal Rab34 as a new GTPase mediator of ciliary membrane biogenesis.


Subject(s)
Cell Membrane/metabolism , Cilia/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Cell Line , Centrioles/metabolism , Dogs , Humans , Hydrolysis , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Signal Transduction , rab GTP-Binding Proteins/genetics
5.
J Mol Biol ; 433(7): 166833, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33524412

ABSTRACT

Cofilin is an essential actin filament severing protein that accelerates the assembly dynamics and turnover of actin networks by increasing the number of filament ends where subunits add and dissociate. It binds filament subunits stoichiometrically and cooperatively, forming clusters of contiguously-bound cofilin at sub-saturating occupancies. Filaments partially occupied with cofilin sever at boundaries between bare and cofilin-decorated segments. Imaging studies concluded that bound clusters must reach a critical size (Cc) of 13-100 cofilins to sever filaments. In contrast, structural and modeling studies suggest that a few or even a single cofilin can sever filaments, possibly with different severing rate constants. How clusters grow through the cooperative incorporation of additional cofilin molecules, specifically if they elongate asymmetrically or uniformly from both ends and if they are modulated by filament shape and external force, also lacks consensus. Here, using hydrodynamic flow to visualize individual actin filaments with TIRF microscopy, we found that neither flow-induced filament bending, tension, nor surface attachment conditions substantially affected the kinetics of cofilin binding to actin filaments. Clusters of bound cofilin preferentially extended toward filament pointed ends and displayed severing competency at small sizes (Cc < 3), with no detectable severing dependence on cluster size. These data support models in which small clusters of cofilin introduce local, but asymmetric, structural changes in actin filaments that promote filament severing with a rate constant that depends weakly on the size of the cluster.


Subject(s)
Actin Cytoskeleton/ultrastructure , Actin Depolymerizing Factors/ultrastructure , Actins/ultrastructure , Cytoskeleton/ultrastructure , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/genetics , Actin Depolymerizing Factors/chemistry , Actin Depolymerizing Factors/genetics , Actins/chemistry , Actins/genetics , Biophysical Phenomena , Cryoelectron Microscopy , Humans , Kinetics , Protein Binding/genetics
6.
Clin Transl Sci ; 14(1): 362-372, 2021 01.
Article in English | MEDLINE | ID: mdl-33064927

ABSTRACT

Enzyme replacement with ectonucleotide pyrophosphatase phospodiesterase-1 (ENPP1) eliminates mortality in a murine model of the lethal calcification disorder generalized arterial calcification of infancy. We used protein engineering, glycan optimization, and a novel biomanufacturing platform to enhance potency by using a three-prong strategy. First, we added new N-glycans to ENPP1; second, we optimized pH-dependent cellular recycling by protein engineering of the Fc neonatal receptor; finally, we used a two-step process to improve sialylation by first producing ENPP1-Fc in cells stably transfected with human α-2,6-sialyltransferase (ST6) and further enhanced terminal sialylation by supplementing production with 1,3,4-O-Bu3 ManNAc. These steps sequentially increased the half-life of the parent compound in rodents from 37 hours to ~ 67 hours with an added N-glycan, to ~ 96 hours with optimized pH-dependent Fc recycling, to ~ 204 hours when the therapeutic was produced in ST6-overexpressing cells with 1,3,4-O-Bu3 ManNAc supplementation. The alterations were demonstrated to increase drug potency by maintaining efficacious levels of plasma phosphoanhydride pyrophosphate in ENPP1-deficient mice when the optimized biologic was administered at a 10-fold lower mass dose less frequently than the parent compound-once every 10 days vs. 3 times a week. We believe these improvements represent a general strategy to rationally optimize protein therapeutics.


Subject(s)
Histocompatibility Antigens Class I/therapeutic use , Phosphoric Diester Hydrolases/pharmacology , Protein Engineering , Pyrophosphatases/pharmacology , Receptors, Fc/therapeutic use , Recombinant Fusion Proteins/pharmacology , Vascular Calcification/drug therapy , Animals , Area Under Curve , Disease Models, Animal , Enzyme Replacement Therapy/methods , Glycosylation , Half-Life , Histocompatibility Antigens Class I/genetics , Humans , Male , Mice, Transgenic , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/isolation & purification , Phosphoric Diester Hydrolases/therapeutic use , Protein Structure, Tertiary/genetics , Pyrophosphatases/genetics , Pyrophosphatases/isolation & purification , Pyrophosphatases/therapeutic use , Receptors, Fc/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/therapeutic use , Vascular Calcification/genetics
7.
J Zoo Wildl Med ; 51(2): 321-325, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32549561

ABSTRACT

Pronghorn (Antilocapra americana) are native to western North America and are found in 24 Association of Zoos and Aquariums (AZA)-accredited institutions. Acute-phase proteins (APP) are a broad class of proteins that are stimulated in response to inflammation and have been shown to be a sensitive measure of inflammation in equids and ruminants. In this study, blood samples from clinically normal free-ranging and captive populations of pronghorn were analyzed using assays for protein electrophoresis (EPH) and APP, including serum amyloid A (SAA) and haptoglobin (HP), to develop preliminary ranges to gauge potential differences between these populations. Additional samples were taken from clinically abnormal captive pronghorn with facial abscesses. By EPH measurements, albumin: globulin ratio mean and SE were significantly different (P <0.05) with 1.02 (0.08) for captive populations and 1.91 (0.05) for free-ranging populations. Total protein mean and SE were significantly different (P <0.05) for captive and free-ranging populations, respectively 5.6 (0.3) g/dl and 6.9 (0.1) g/dl. Mean and SD of SAA for captive pronghorn were 1.4 (3.2) mg/L, and were significantly different from the free-ranging population, which was below the limits of detection for (P <0.05). There was no difference in HP levels between these groups. In a case study of a pronghorn with facial abscesses, elevated levels of HP, but not SAA, suggested that HP maybe useful in certain disease states. Future studies should explore the use of these biomarkers as tools to monitor general health, prognosis, and subclinical disease.


Subject(s)
Acute-Phase Proteins/metabolism , Animals, Wild/blood , Animals, Zoo/blood , Blood Protein Electrophoresis/veterinary , Ruminants/blood , Animals , Female , Male , North America , Reference Values , Texas
8.
J Mol Biol ; 430(14): 2080-2095, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29782832

ABSTRACT

Dbp5, DDX19 in humans, is an essential DEAD-box protein involved in mRNA export, which has also been linked to other cellular processes, including rRNA export and translation. Dbp5 ATPase activity is regulated by several factors, including RNA, the nucleoporin proteins Nup159 and Gle1, and the endogenous small-molecule inositol hexakisphosphate (InsP6). To better understand how these factors modulate Dbp5 activity and how this modulation relates to in vivo RNA metabolism, a detailed characterization of the Dbp5 mechanochemical cycle in the presence of those regulators individually or together is necessary. In this study, we test the hypothesis that Nup159 controls the ADP-bound state of Dbp5. In addition, the contributions of Mg2+ to the kinetics and thermodynamics of ADP binding to Dbp5 were assessed. Using a solution based in vitro approach, Mg2+ was found to slow ADP and ATP release from Dbp5 and increased the overall ADP and ATP affinities, as observed with other NTPases. Furthermore, Nup159 did not accelerate ADP release, while Gle1 actually slowed ADP release independent of Mg2+. These findings are not consistent with Nup159 acting as a nucleotide exchange factor to promote ADP release and Dbp5 ATPase cycling. Instead, in the presence of Nup159, the interaction between Gle1 and ADP-bound Dbp5 was found to be reduced by ~18-fold, suggesting that Nup159 alters the Dbp5-Gle1 interaction to aid Gle1 release from Dbp5.


Subject(s)
Adenosine Diphosphate/metabolism , DEAD-box RNA Helicases/metabolism , Nuclear Pore Complex Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Adenosine Diphosphate/analogs & derivatives , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Humans , Magnesium/metabolism , Protein Binding , RNA/metabolism , ortho-Aminobenzoates/metabolism
9.
Mol Carcinog ; 57(4): 536-548, 2018 04.
Article in English | MEDLINE | ID: mdl-29280516

ABSTRACT

Medulloblastoma (MB) is a malignant pediatric brain tumor with poor prognosis. Signal transducers and activators of transcription-3 (STAT3) is constitutively activated in MB where it functions as an oncoprotein, mediating cancer progression and metastasis. Here, we have delineated the functional role of activated STAT3 in MB, by using a cell permeable STAT3-NH2 terminal domain inhibitor (S3-NTDi) that specifically perturbs the structure/function of STAT3. We have implemented several biochemical experiments using human MB tumor microarray (TMA) and pediatric MB cell lines, derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/SHH tumors. Treatment of MB cells with S3-NTDi leads to growth inhibition, cell cycle arrest, and apoptosis. S3-NTDi downregulated expression of STAT3 target genes, delayed migration of MB cells, attenuated epithelial-mesenchymal transition (EMT) marker expressions and reduced cancer stem-cell associated protein expressions in MB-spheres. To elucidate mechanisms, we showed that S3-NTDi induce expression of pro-apoptotic gene, C/EBP-homologous protein (CHOP), and decrease association of STAT3 to the proximal promoter of CCND1 and BCL2. Of note, S3-NTDi downregulated microRNA-21, which in turn, de-repressed Protein Inhibitor of Activated STAT3 (PIAS3), a negative regulator of STAT3 signaling pathway. Furthermore, combination therapy with S3-NTDi and cisplatin significantly decreased highly aggressive MYC-amplified MB cell growth and induced apoptosis by downregulating STAT3 regulated proliferation and anti-apoptotic gene expression. Together, our results revealed an important role of STAT3 in regulating MB pathogenesis. Disruption of this pathway with S3-NTDi, therefore, may serves as a promising candidate for targeted MB therapy by enhancing chemosensitivity of MB cells and potentially improving outcomes in high-risk patients.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , Molecular Chaperones/genetics , Peptides/pharmacology , Protein Inhibitors of Activated STAT/genetics , STAT3 Transcription Factor/genetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cisplatin/pharmacology , Humans , Medulloblastoma/genetics , Medulloblastoma/metabolism , Medulloblastoma/pathology , Molecular Chaperones/metabolism , Peptides/chemical synthesis , Protein Inhibitors of Activated STAT/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism
10.
BMC Cancer ; 16(1): 867, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27821095

ABSTRACT

BACKGROUND: Evaluate the anti-tumor activity of ozonide antimalarials using a chemoresistant neuroblastoma cell line, BE (2)-c. METHODS: The activity of 12 ozonides, artemisinin, and two semisynthetic artemisinins were tested for activity against two neuroblastoma cell-lines (BE (2)-c and IMR-32) and the Ewing's Sarcoma cell line A673 in an MTT viability assay. Time course data indicated that peak effect was seen 18 h after the start of treatment thus 18 h pre-treatment was used for all subsequent experiments. The most active ozonide (OZ513) was assessed in a propidium iodide cell cycle flow cytometry analysis which measured cell cycle transit and apoptosis. Metabolic effects of OZ513 in BE (2)-c cells was evaluated. Western blots for the apoptotic proteins cleaved capase-3 and cleaved PARP, the highly amplified oncogene MYCN, and the cell cycle regulator CyclinD1, were performed. These in-vitro experiments were followed by an in-vivo experiment in which NOD-scid gamma immunodeficient mice were injected subcutaneously with 1 × 106 BE (2)-c cells followed by immediate treatment with 50-100 mg/kg/day doses of OZ513 administered IP three times per week out to 23 days after injection of tumor. Incidence of tumor development, time to tumor development, and rate of tumor growth were assessed in DMSO treated controls (N = 6), and OZ513 treated mice (N = 5). RESULTS: It was confirmed that five commonly used chemotherapy drugs had no cytotoxic activity in BE (2)-c cells. Six of 12 ozonides tested were active in-vitro at concentrations achievable in vivo with OZ513 being most active (IC50 = 0.5 mcg/ml). OZ513 activity was confirmed in IMR-32 and A673 cells. The Ao peak on cell-cycle analysis was increased after treatment with OZ513 in a concentration dependent fashion which when coupled with results from western blot analysis which showed an increase in cleaved capase-3 and cleaved PARP supported an increase in apoptosis. There was a concentration dependent decline in the MYCN and a cyclinD1 protein indicative of anti-proliferative activity and cell cycle disruption. OXPHOS metabolism was unaffected by OZ513 treatment while glycolysis was increased. There was a significant delay in time to tumor development in mice treated with OZ513 and a decline in the rate of tumor growth. CONCLUSIONS: The antimalarial ozonide OZ513 has effective in-vitro and in-vivo activity against a pleiotropic drug resistant neuroblastoma cell-line. Treatment with OZ513 increased apoptotic markers and glycolysis with a decline in the MYCN oncogene and the cell cycle regulator cyclinD1. These effects suggest adaptation to cellular stress by mechanism which remain unclear.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Heterocyclic Compounds/pharmacology , Animals , Apoptosis/drug effects , Artemisinins/pharmacology , Biomarkers , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Disease Models, Animal , Humans , Metabolome , Metabolomics/methods , Mice , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/mortality , Neuroblastoma/pathology , Xenograft Model Antitumor Assays
11.
J Clin Microbiol ; 52(9): 3237-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24958799

ABSTRACT

Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of deer, elk, and moose, is the only prion disease affecting free-ranging animals. Since the disease was first identified in northern Colorado and southern Wyoming in 1967, new epidemic foci of the disease have been identified in 20 additional states, as well as two Canadian provinces and the Republic of South Korea. Identification of CWD-affected animals currently requires postmortem analysis of brain or lymphoid tissues using immunohistochemistry (IHC) or an enzyme-linked immunosorbent assay (ELISA), with no practical way to evaluate potential strain types or to investigate the epidemiology of existing or novel foci of disease. Using a standardized real-time (RT)-quaking-induced conversion (QuIC) assay, a seeded amplification assay employing recombinant prion protein as a conversion substrate and thioflavin T (ThT) as an amyloid-binding fluorophore, we analyzed, in a blinded manner, 1,243 retropharyngeal lymph node samples from white-tailed deer, mule deer, and moose, collected in the field from areas with current or historic CWD endemicity. RT-QuIC results were then compared with those obtained by conventional IHC and ELISA, and amplification metrics using ThT and thioflavin S were examined in relation to the clinical history of the sampled deer. The results indicate that RT-QuIC is useful for both identifying CWD-infected animals and facilitating epidemiological studies in areas in which CWD is endemic or not endemic.


Subject(s)
Clinical Laboratory Techniques/methods , Lymph Nodes/pathology , Ruminants , Wasting Disease, Chronic/diagnosis , Amyloid/analysis , Animals , Female , Fluorescence , Male , Staining and Labeling/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...