Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(21): 11328-11336, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32393620

ABSTRACT

Across the Upper Missouri River Basin, the recent drought of 2000 to 2010, known as the "turn-of-the-century drought," was likely more severe than any in the instrumental record including the Dust Bowl drought. However, until now, adequate proxy records needed to better understand this event with regard to long-term variability have been lacking. Here we examine 1,200 y of streamflow from a network of 17 new tree-ring-based reconstructions for gages across the upper Missouri basin and an independent reconstruction of warm-season regional temperature in order to place the recent drought in a long-term climate context. We find that temperature has increasingly influenced the severity of drought events by decreasing runoff efficiency in the basin since the late 20th century (1980s) onward. The occurrence of extreme heat, higher evapotranspiration, and associated low-flow conditions across the basin has increased substantially over the 20th and 21st centuries, and recent warming aligns with increasing drought severities that rival or exceed any estimated over the last 12 centuries. Future warming is anticipated to cause increasingly severe droughts by enhancing water deficits that could prove challenging for water management.

2.
Environ Manage ; 49(5): 1076-91, 2012 May.
Article in English | MEDLINE | ID: mdl-22419396

ABSTRACT

Recent efforts by the United States Department of the Interior (DOI) have the potential to make climate zones the basic geographic units guiding monitoring and resource management programs in the western U.S. We evaluated a new National Park Service approach for delineating climate zones that will likely be a model for other DOI agencies. Using the test case of the Greater Yellowstone Area in Wyoming, Montana and Idaho, we conducted three separate analyses, each based on a different dataset. Cluster analysis of 1971-2000 temperature and precipitation normals grouped weather stations according to similarities in seasonal patterns. Principal Components Analysis (PCAs) of 1895-2008 monthly data grouped stations by similarities in long-term variability. Finally, an analysis of snow data further subdivided the zones defined by the other two analyses. The climate zones produced by the cluster analysis and the PCAs were roughly similar to each other, but the differences were significant. The two sets of zones may be useful for different applications. For example, studies that analyze links between climate patterns and the demography of threatened species should focus on the results of the PCAs. The broad similarity among results produced by the different approaches supported the application of these zones in climate-related monitoring and analysis. However, since choices in data and methodology can affect the details of maps depicting zone boundaries, there are practical limitations to their use.


Subject(s)
Climate Change , Climate , Conservation of Natural Resources/methods , Environmental Monitoring/methods , Seasons , Cluster Analysis , Conservation of Natural Resources/statistics & numerical data , Environmental Monitoring/statistics & numerical data , Geographic Information Systems , Geological Phenomena , Northwestern United States , Principal Component Analysis
3.
Science ; 333(6040): 332-5, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21659569

ABSTRACT

In western North America, snowpack has declined in recent decades, and further losses are projected through the 21st century. Here, we evaluate the uniqueness of recent declines using snowpack reconstructions from 66 tree-ring chronologies in key runoff-generating areas of the Colorado, Columbia, and Missouri River drainages. Over the past millennium, late 20th century snowpack reductions are almost unprecedented in magnitude across the northern Rocky Mountains and in their north-south synchrony across the cordillera. Both the snowpack declines and their synchrony result from unparalleled springtime warming that is due to positive reinforcement of the anthropogenic warming by decadal variability. The increasing role of warming on large-scale snowpack variability and trends foreshadows fundamental impacts on streamflow and water supplies across the western United States.

4.
Proc Natl Acad Sci U S A ; 106 Suppl 2: 19685-92, 2009 Nov 17.
Article in English | MEDLINE | ID: mdl-19805104

ABSTRACT

Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.


Subject(s)
Climate Change , Ecosystem , Models, Biological , Animals
5.
Ecology ; 87(5): 1124-30, 2006 May.
Article in English | MEDLINE | ID: mdl-16761590

ABSTRACT

Evidence from woodrat middens and tree rings at Dutch John Mountain (DJM) in northeastern Utah reveal spatiotemporal patterns of pinyon pine (Pinus edulis Engelm.) colonization and expansion in the past millennium. The DJM population, a northern outpost of pinyon, was established by long-distance dispersal (approximately 40 km). Growth of this isolate was markedly episodic and tracked multidecadal variability in precipitation. Initial colonization occurred by AD 1246, but expansion was forestalled by catastrophic drought (1250-1288), which we speculate produced extensive mortality of Utah Juniper (Juniperus osteosperma (Torr.) Little), the dominant tree at DJM for the previous approximately 8700 years. Pinyon then quickly replaced juniper across DJM during a few wet decades (1330-1339 and 1368-1377). Such alternating decadal-scale droughts and pluvial events play a key role in structuring plant communities at the landscape to regional level. These decadal-length precipitation anomalies tend to be regionally coherent and can synchronize physical and biological processes across large areas. Vegetation forecast models must incorporate these temporal and geographic aspects of climate variability to accurately predict the effects of future climate change.


Subject(s)
Climate , Ecosystem , Juniperus/growth & development , Pinus/growth & development , Population Density , Population Dynamics , Population Growth , Rain , Utah
SELECTION OF CITATIONS
SEARCH DETAIL
...