Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 22(7): 2604-8, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22370265

ABSTRACT

SAR studies on a series of thiophene amide derivatives provided CB(2) receptor agonists. The activity of the compounds was characterized by radioligand binding determination, multiple functional assays, ADME, and pharmacokinetic studies. A representative compound with selectivity for CB(2) over CB(1) effectively produced analgesia in behavioral models of neuropathic, inflammatory, and postsurgical pain. Control experiments using a CB(2) antagonist demonstrated the efficacy in the pain models resulted from CB(2) agonism.


Subject(s)
Amides/chemical synthesis , Analgesics/chemical synthesis , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Receptor, Cannabinoid, CB2/agonists , Thiophenes/chemical synthesis , Amides/pharmacokinetics , Amides/pharmacology , Analgesics/pharmacokinetics , Analgesics/pharmacology , Animals , Biological Availability , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Hyperalgesia/metabolism , Neuralgia/metabolism , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Structure-Activity Relationship , Thiophenes/pharmacokinetics , Thiophenes/pharmacology
2.
J Med Chem ; 53(1): 295-315, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19921781

ABSTRACT

Several 3-acylindoles with high affinity for the CB(2) cannabinoid receptor and selectivity over the CB(1) receptor have been prepared. A variety of 3-acyl substituents were investigated, and the tetramethylcyclopropyl group was found to lead to high affinity CB(2) agonists (5, 16). Substitution at the N1-indole position was then examined. A series of aminoalkylindoles was prepared and several substituted aminoethyl derivatives were active (23-27, 5) at the CB(2) receptor. A study of N1 nonaromatic side chain variants provided potent agonists at the CB(2) receptor (16, 35-41, 44-47, 49-54, and 57-58). Several polar side chains (alcohols, oxazolidinone) were well-tolerated for CB(2) receptor activity (41, 50), while others (amide, acid) led to weaker or inactive compounds (55 and 56). N1 aromatic side chains also afforded several high affinity CB(2) receptor agonists (61, 63, 65, and 69) but were generally less potent in an in vitro CB(2) functional assay than were nonaromatic side chain analogues.


Subject(s)
Indoles/pharmacology , Ketones/pharmacology , Receptor, Cannabinoid, CB2/agonists , Drug Design , Humans , Indoles/chemical synthesis , Indoles/chemistry , Ketones/chemical synthesis , Ketones/chemistry , Ligands , Molecular Structure , Receptor, Cannabinoid, CB1/agonists , Stereoisomerism , Structure-Activity Relationship
3.
Dent Mater ; 25(5): 557-65, 2009 May.
Article in English | MEDLINE | ID: mdl-19297016

ABSTRACT

OBJECTIVES: The goal of the present study was to investigate the potential for acoustic microscopy techniques to characterize the cement-dentin interface in restored teeth. METHODS: Special flat-parallel specimens and whole extracted teeth with restorations were scanned using a high-frequency (50 MHz) focused ultrasonic transducer. Visual acoustic images (B- and C-scans) of the cement-dentin interface were obtained nondestructively, analyzed and compared with optical images taken after the samples were cut along the scanning axis. The shear bonding strength of a subsection of specimens was tested in a Lloyd material testing machine. RESULTS: An essential distinction between the acoustical properties associated with good and failed bonding has been shown. In the case of failed adhesion, the ultrasound signal reflection from the cement-dentin interface is up to four to seven times higher in magnitude than in the case of good bonding. The comparison of the ultrasound imaging data with the data obtained using an optical microscope revealed a strong correspondence with the acoustical and optical results with respect to the presence, position and dimensions of the defects. The specimens showing higher ultrasound reflection from cement/dentin interface have also shown lower shear bonding strength. SIGNIFICANCE: The results demonstrate that acoustic scanning with a high-frequency focused ultrasonic probe is a valuable method for nondestructive morpho-mechanical analysis of cement/dentin interface for either experimental models or whole restored teeth. An appropriately expanded approach can be widely used for the pre-clinical evaluation of dental materials. Further, this method may prove beneficial in the design of new diagnostic ultrasound devices and techniques for use within clinical dentistry.


Subject(s)
Dental Bonding , Dentin-Bonding Agents , Dentin/diagnostic imaging , Microscopy, Acoustic , Adhesiveness , Dental Stress Analysis , Glass Ionomer Cements , Humans , Materials Testing/methods , Tensile Strength
4.
J Pharmacol Exp Ther ; 328(1): 141-51, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18931146

ABSTRACT

Studies demonstrating the antihyperalgesic and antiallodynic effects of cannabinoid CB(2) receptor activation have been largely derived from the use of receptor-selective ligands. Here, we report the identification of A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], a potent and selective CB(2) agonist as characterized in in vitro pharmacological assays and in in vivo models of pain and central nervous system (CNS) behavior models. In radioligand binding assays, A-836339 displays high affinities at CB(2) receptors and selectivity over CB(1) receptors in both human and rat. Likewise, A-836339 exhibits high potencies at CB(2) and selectivity over CB(1) receptors in recombinant fluorescence imaging plate reader and cyclase functional assays. In addition A-836339 exhibits a profile devoid of significant affinity at other G-protein-coupled receptors and ion channels. A-836339 was characterized extensively in various animal pain models. In the complete Freund's adjuvant model of inflammatory pain, A-836339 exhibits a potent CB(2) receptor-mediated antihyperalgesic effect that is independent of CB(1) or mu-opioid receptors. A-836339 has also demonstrated efficacies in the chronic constrain injury (CCI) model of neuropathic pain, skin incision, and capsaicin-induced secondary mechanical hyperalgesia models. Furthermore, no tolerance was developed in the CCI model after subchronic treatment with A-836339 for 5 days. In assessing CNS effects, A-836339 exhibited a CB(1) receptor-mediated decrease of spontaneous locomotor activities at a higher dose, a finding consistent with the CNS activation pattern observed by pharmacological magnetic resonance imaging. These data demonstrate that A-836339 is a useful tool for use of studying CB(2) receptor pharmacology and for investigation of the role of CB(2) receptor modulation for treatment of pain in preclinical animal models.


Subject(s)
Amides/pharmacology , Cyclopropanes/pharmacology , Inflammation/physiopathology , Pain/physiopathology , Receptor, Cannabinoid, CB1/physiology , Receptor, Cannabinoid, CB2/physiology , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Dermatologic Surgical Procedures , Hindlimb , Humans , Hyperalgesia/physiopathology , Kidney/embryology , Magnetic Resonance Imaging/methods , Male , Pain, Postoperative/physiopathology , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB2/agonists
5.
Eur J Pharmacol ; 603(1-3): 12-21, 2009 Jan 28.
Article in English | MEDLINE | ID: mdl-19071106

ABSTRACT

Cannabinoid CB(2) receptors may couple to a variety of G proteins and intracellular effector systems to regulate physiological and pathophysiological processes involved in inflammatory and neuropathic pain. In this study, the coupling of cannabinoid hCB(2) receptors to Galpha(qo5) and Galpha(qi5) proteins was studied and compared by investigating the pharmacological properties of HEK-293 cells co-expressing cannabinoid hCB(2) with chimeric Galpha(qo5) (HEK-hCB(2)-G(qo5)) or Galpha(qi5) (HEK-hCB(2)-G(qi5)). Both cell lines were found to be amendable for measuring cannabinoid CB(2) receptor agonist evoked Ca(2+) mobilization in a high-throughput manner. Comparison of binding affinities of ligands in homogenates prepared from both cell lines revealed similar affinities for [(3)H]CP55,940 displacement with the following rank order: CP55,940 approximately WIN55,212-2 > SR144528 > JWH015approximatelyAM1241approximately AM630 > SR141617A approximately AM251. In comparison at cannabinoid hCB(1) receptors: the rank order was: SR141617A approximately CP55,940 > AM251 > WIN55,212-2 > AM1241approximatelySR144528 > JWH015approximatelyAM630. No significant differences in cannabinoid receptor agonist (CP55,940 approximately WIN55,212-2 > JWH015) or antagonist(SR144528 approximately AM1241 > AM630 > AM251 approximately SR141617A) profiles were observed in HEK-hCB(2)-G(qo5) and HEK-hCB(2)-G(qi5) cells as determined using intracellular Ca(2+) measurements. Experiments with HEK-hCB(2)-G(qi5) cells carried out by investigating interactions among CP55,940, carbachol, thapsigargin, and U73122 revealed that the mechanism of cannabinoid hCB(2) receptor coupling via chimeric G proteins to Ca(2+) mobilization involves phospholipase C-inositol trisphosphate (PLC-IP(3)) and that it is less efficient in comparison to the endogenous muscarinic mediated PLC-IP(3)-Ca(2+) pathway. This study demonstrates that expressed cannabinoid CB(2) receptors couple equally well to Galpha(qo5) and Galpha(qi5) proteins and that receptor agonist or antagonist pharmacology is not influenced by the nature of these coupled G proteins when heterologously expressed.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Receptor, Cannabinoid, CB2/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Calcium/metabolism , Cell Line , Gene Expression , Humans , Inositol Phosphates/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , Ligands , Phospholipases/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptors, Muscarinic/metabolism , Signal Transduction
6.
J Med Chem ; 51(10): 3030-4, 2008 May 22.
Article in English | MEDLINE | ID: mdl-18438986

ABSTRACT

N'-aryl acyl hydrazides were identified as P2X7 receptor antagonists. Structure-activity relationship (SAR) studies evaluated functional activity by monitoring calcium flux inhibition in cell lines expressing recombinant human and rat P2X7 receptors. Selected analogs were assayed in vitro for their capacity to inhibit release of cytokine IL-1beta. Compounds with potent antagonist function were evaluated in vivo using the zymosan-induced peritonitis model. A representative compound effectively attenuated mechanical allodynia in a rat model of neuropathic pain.


Subject(s)
Analgesics/chemical synthesis , Hydrazines/chemical synthesis , Purinergic P2 Receptor Antagonists , Analgesics/chemistry , Analgesics/pharmacology , Animals , Calcium/metabolism , Cell Line , Humans , Hydrazines/chemistry , Hydrazines/pharmacology , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Isoquinolines/pharmacology , Pain/drug therapy , Pain Measurement , Peripheral Nervous System Diseases/drug therapy , Peritoneal Cavity , Peritonitis/metabolism , Peritonitis/prevention & control , Quinolines/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , Rats , Receptors, Purinergic P2X7 , Recombinant Proteins/antagonists & inhibitors , Structure-Activity Relationship
7.
J Med Chem ; 51(6): 1904-12, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18311894

ABSTRACT

A series of potent indol-3-yl-tetramethylcyclopropyl ketones have been prepared as CB 2 cannabinoid receptor ligands. Two unsubstituted indoles ( 5, 32) were the starting points for an investigation of the effect of indole ring substitutions on CB 2 and CB 1 binding affinities and activity in a CB 2 in vitro functional assay. Indole ring substitutions had varying effects on CB 2 and CB 1 binding, but were generally detrimental to agonist activity. Substitution on the indole ring did lead to improved CB 2/CB 1 binding selectivity in some cases (i.e., 7- 9, 15- 20). All indoles with the morpholino-ethyl side chain ( 32- 43) exhibited weaker binding affinity and less agonist activity relative to that of their tetrahydropyranyl-methyl analogs ( 5- 31). Several agonists were active in the complete Freund's adjuvant model of chronic inflammatory thermal hyperalgesia ( 32, 15).


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Indoles/pharmacology , Ketones/pharmacology , Receptor, Cannabinoid, CB2/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Binding, Competitive , Cell Line , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Indoles/chemical synthesis , Indoles/chemistry , Ketones/chemical synthesis , Ketones/chemistry , Ligands , Molecular Conformation , Rats , Receptor, Cannabinoid, CB1/drug effects , Stereoisomerism , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 18(6): 2089-92, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18272366

ABSTRACT

A novel series of aminotriazole-based P2X(7) antagonists was synthesized, and their structure-activity relationships (SAR) were investigated for activity at both human and rat P2X(7) receptors. Most compounds showed greater potency at the human receptor although several analogs were discovered with potent activity (pIC(50) > or = 7.5) at both human and rat P2X(7).


Subject(s)
Purinergic P2 Receptor Antagonists , Pyridines/chemical synthesis , Pyridines/pharmacology , Recombinant Proteins/antagonists & inhibitors , Triazoles/chemical synthesis , Triazoles/pharmacology , Animals , Humans , In Vitro Techniques , Molecular Structure , Rats , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2X7 , Recombinant Proteins/metabolism , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 17(14): 4044-8, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17482819

ABSTRACT

Structure-activity relationship (SAR) studies were conducted around early tetrazole-based leads 3 and 4. Replacements for the tetrazole core were investigated and the pendant benzyl substitution was reoptimized with a triazole isostere. Triazole-based P2X(7) antagonists were identified with similar potency to the lead compound 4 but with improved physiochemical properties. Compound 12 was active in a rat model of neuropathic pain.


Subject(s)
Purinergic P2 Receptor Antagonists , Triazoles/pharmacology , Animals , Rats , Receptors, Purinergic P2X7 , Structure-Activity Relationship , Triazoles/chemistry
10.
J Med Chem ; 49(12): 3659-66, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16759108

ABSTRACT

1-Benzyl-5-aryltetrazoles were discovered to be novel antagonists for the P2X(7) receptor. Structure-activity relationship (SAR) studies were conducted around both the benzyl and phenyl moieties. In addition, the importance of the regiochemical substitution on the tetrazole was examined. Compounds were evaluated for activity to inhibit calcium flux in both human and rat recombinant P2X(7) cell lines using fluorometric imaging plate reader technology. Analogues were also assayed for their ability to inhibit IL-1beta release and to inhibit P2X(7)-mediated pore formation in human THP-1 cells. Compound 15d was advanced to efficacy studies in a model of neuropathic pain where significant reversal of mechanical allodynia was observed at doses that did not affect motor coordination.


Subject(s)
Analgesics/chemical synthesis , Purinergic P2 Receptor Antagonists , Pyridines/chemical synthesis , Tetrazoles/chemical synthesis , Analgesics/chemistry , Analgesics/pharmacology , Animals , Cell Line , Humans , Interleukin-1/antagonists & inhibitors , Interleukin-1/metabolism , Ligation , Motor Activity/drug effects , Pain/drug therapy , Pain/etiology , Patch-Clamp Techniques , Peripheral Nervous System Diseases/complications , Physical Stimulation , Pyridines/chemistry , Pyridines/pharmacology , Rats , Receptors, Purinergic P2/physiology , Receptors, Purinergic P2X7 , Spinal Nerves , Stereoisomerism , Structure-Activity Relationship , Tetrazoles/chemistry , Tetrazoles/pharmacology , Touch
11.
Epilepsia ; 46(9): 1349-61, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16146429

ABSTRACT

PURPOSE: The objective of this study was to characterize the antiseizure and safety profiles of ABT-769 [(R)-N-(2 amino-2-oxoethyl)spiro[2,5]octane-1-carboxamide]. METHODS: ABT-769 was tested for protection against maximal electroshock and pentylenetetrazol-induced seizures in the mouse and for suppression of electrically kindled amygdala seizures and spontaneous absence-like seizures in the rat. The central nervous system safety profile was evaluated by using tests of motor coordination and inhibitory avoidance. The potential for liver toxicity was assessed in vitro by using a mitochondrial fatty acid beta-oxidation assay. Teratogenic potential was assessed in the mouse. RESULTS: ABT-769 blocked maximal electroshock, subcutaneous pentylenetetrazol and intravenous pentylenetetrazol-induced seizures with median effective dose (ED50) values of 0.25, 0.38, and 0.11 mmol/kg, p.o., respectively. No tolerance was evident in the intravenous pentylenetetrazol test after twice-daily dosing of ABT-769 (0.3 mmol/kg, p.o.) for 4 days. ABT-769 blocked absence-like spike-wave discharge (ED50, 0.15 mmol/kg, p.o.) and shortened the cortical and amygdala afterdischarge duration of kindled seizures (1 and 3 mmol/kg, p.o.). The protective indices (ED50 rotorod impairment/ED50 seizure protection) were 4.8, 3.2, and 10.9 in the maximal electroshock, subcutaneous pentylenetetrazol and intravenous pentylenetetrazol seizure tests, respectively. ABT-769 did not affect inhibitory avoidance performance (0.1-1 mmol/kg, p.o.). ABT-769 did not affect mitochondrial fatty acid beta-oxidation or induce neural tube defects. CONCLUSIONS: ABT-769 is an efficacious antiseizure agent in animal models of convulsive and nonconvulsive epilepsy and has a favorable safety profile. ABT-769 has a broad-spectrum profile like that of valproic acid. Its profile is clearly different from those of carbamazepine, phenytoin, lamotrigine, topiramate, vigabatrin, and tiagabine.


Subject(s)
Anticonvulsants/pharmacology , Anticonvulsants/toxicity , Behavior, Animal/drug effects , Epilepsy/prevention & control , Valproic Acid/analogs & derivatives , Valproic Acid/pharmacology , Abnormalities, Drug-Induced/epidemiology , Amygdala/drug effects , Amygdala/physiopathology , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Electroshock , Epilepsy/chemically induced , Epilepsy/metabolism , Epilepsy, Absence/chemically induced , Epilepsy, Absence/metabolism , Epilepsy, Absence/prevention & control , Humans , Injections, Intravenous , Injections, Subcutaneous , Kindling, Neurologic/drug effects , Kindling, Neurologic/metabolism , Kindling, Neurologic/physiology , Male , Mice , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Pentylenetetrazole/administration & dosage , Rats , Rats, Wistar , Species Specificity , Spiro Compounds/pharmacology , Spiro Compounds/toxicity , Valproic Acid/toxicity
12.
J Pharmacol Exp Ther ; 311(3): 904-12, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15277581

ABSTRACT

Nonsteriodal anti-inflammatory drugs (NSAIDs) are efficacious for the treatment of pain associated with inflammatory disease. Clinical experience with marketed selective cyclooxygenase-2 (COX-2) inhibitors (celecoxib, rofecoxib, and valdecoxib) has confirmed the utility of these agents in the treatment of inflammatory pain with an improved gastrointestinal safety profile relative to NSAID comparators. These COX-2 inhibitors belong to the same structural class. Each contains a core heterocyclic ring with two appropriately substituted phenyl rings appended to adjacent atoms. Here, we report the identification of vicinally disubstituted pyridazinones as potent and selective COX-2 inhibitors. The lead compound in the series, ABT-963 [2-(3,4-difluoro-phenyl)-4-(3-hydroxy-3-methyl-butoxy)-5-(4-methanesulfonyl-phenyl)-2H-pyridazin-3-one], has excellent selectivity (ratio of 276, COX-2/COX-1) in human whole blood, improved aqueous solubility compared with celecoxib and rofecoxib, high oral anti-inflammatory potency in vivo, and gastric safety in the animal studies. After oral administration, ABT-963 reduced prostaglandin E2 production in the rat carrageenan air pouch model (ED50 of 0.4 mg/kg) and reduced the edema in the carrageenan induced paw edema model with an ED30 of 1.9 mg/kg. ABT-963 dose dependently reduced nociception in the carrageenan hyperalgesia model (ED50 of 3.1 mg/kg). After 14 days of dosing in the adjuvant arthritis model, ABT-963 had an ED(50) of 1.0 mg/kg in reducing the swelling of the hind paws. Magnetic resonance imaging examination of the diseased paws in the adjuvant model showed that ABT-963 significantly reduced bone loss and soft tissue destruction. ABT-963 is a highly selective COX-2 inhibitor that may have utility in the treatment of the pain and inflammation associated with arthritis.


Subject(s)
Arthritis, Experimental/drug therapy , Cyclooxygenase Inhibitors/pharmacology , Isoenzymes/antagonists & inhibitors , Pyridazines/pharmacology , Sulfones/pharmacology , Animals , Blood Platelets/drug effects , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/physiopathology , Carrageenan , Central Nervous System Diseases/chemically induced , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Cyclooxygenase Inhibitors/blood , Cyclooxygenase Inhibitors/chemistry , Dogs , Edema/chemically induced , Edema/prevention & control , Eicosanoids/blood , Hot Temperature , Hyperalgesia/drug therapy , Interleukin-1/metabolism , Male , Prostaglandin-Endoperoxide Synthases , Prostaglandins/biosynthesis , Prostaglandins/blood , Pyridazines/blood , Pyridazines/chemistry , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Receptors, Drug/drug effects , Stomach Ulcer/chemically induced , Stomach Ulcer/pathology , Sulfones/blood , Sulfones/chemistry
13.
J Biomol Screen ; 8(3): 324-31, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12857386

ABSTRACT

Eotaxin, an inducer of eosinophil migration and activation, exerts its activity by binding to CCR3, the C-C chemokine receptor 3. An inhibitor of the eotaxin-CCR3 binding interaction may have potential as an anti-inflammatory drug for treatment of asthma, parasitic infections, and allergic disorders. A radioligand binding assay was developed using HEK cells transfected with CCR3, with (125)I eotaxin as the ligand. Whole cells grown on polylysine-coated plates were used as the receptor source for the screen. Screening of more than 200,000 compounds with this assay yielded a number of screening hits, and of these, 2 active novel antagonists were identified. These compounds showed inhibitory effects on eosinophil chemotaxis in both in vitro and in vivo assays.


Subject(s)
Biochemistry/methods , Receptors, Chemokine/chemistry , Receptors, Chemokine/metabolism , Animals , Calcium/metabolism , Cell Line , Cell Membrane/metabolism , Cell Movement , Chemokine CCL11 , Chemokines, CC/chemistry , Chemokines, CC/metabolism , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Eosinophils/metabolism , Humans , Ligands , Mice , Mice, Inbred BALB C , Models, Chemical , Polylysine/chemistry , Protein Binding , Radioligand Assay , Receptors, CCR3 , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...