Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 15(4): 572-587, 2017 07.
Article in English | MEDLINE | ID: mdl-28397387

ABSTRACT

The Ediacara biota features the rise of macroscopic complex life immediately before the Cambrian explosion. One of the most abundant and widely distributed elements of the Ediacara biota is the discoidal fossil Aspidella, which is interpreted as a subsurface holdfast possibly anchoring a frondose epibenthic organism. It is a morphologically simple fossil preserved mainly in siliciclastic rocks, which are unsuitable for comprehensive stable isotope geochemical analyses to decipher its taphonomy and paleoecology. In this regard, three-dimensionally preserved Aspidella fossils from upper Ediacaran limestones of the Khatyspyt Formation in the Olenek Uplift of northern Siberia offer a rare opportunity to leverage geochemistry for insights into their taphonomy and paleoecology. To take advantage of this opportunity, we analyzed δ13 Ccarb , δ18 Ocarb , δ13 Corg , δ34 Spyr , and iron speciation of the Khatyspyt Aspidella fossils and surrounding sediment matrix in order to investigate whether they hosted microbial symbionts, how they were fossilized, and the redox conditions of their ecological environments. Aspidella holdfasts and surrounding sediment matrix show indistinguishable δ13 Corg values, suggesting they did not host and derive significant amount of nutrients from microbial symbionts such as methanogens, methylotrophs, or sulfide-oxidizing bacteria. δ13 Ccarb , δ18 Ocarb , and δ34 Spyr data, along with petrographic observations, suggest that microbial sulfate reduction facilitated the preservation of Aspidella by promoting early authigenic calcite cementation in the holdfasts before matrix cementation and sediment compaction. Iron speciation data are equivocal, largely because of the low total iron concentrations. However, consideration of published sulfur isotope and biomarker data suggests that Aspidella likely lived in non-euxinic waters. It is possible that Aspidella was an opportunistic organism, colonizing the seafloor in large numbers when paleoenvironments were favorable. This study demonstrates that geochemical data of Ediacaran fossils preserved in limestones can offer important insights into the taphonomy and paleoecology of these enigmatic organisms living on the eve of the Cambrian explosion.


Subject(s)
Calcium Carbonate/chemistry , Fossils , Geologic Sediments/chemistry , Animals , Biota , Oxidation-Reduction , Siberia
2.
Science ; 288(5467): 841-5, 2000 May 05.
Article in English | MEDLINE | ID: mdl-10797002

ABSTRACT

A uranium-lead zircon age for a volcanic ash interstratified with fossil-bearing, shallow marine siliciclastic rocks in the Zimnie Gory section of the White Sea region indicates that a diverse assemblage of body and trace fossils occurred before 555.3 +/- 0.3 million years ago. This age is a minimum for the oldest well-documented triploblastic bilaterian Kimberella. It also makes co-occurring trace fossils the oldest that are reliably dated. This determination of age implies that there is no simple relation between Ediacaran diversity and the carbon isotopic composition of Neoproterozoic seawater.


Subject(s)
Biological Evolution , Fossils , Geologic Sediments , Invertebrates , Paleontology , Animals , Carbon Isotopes , Isotopes , Lead/analysis , Russia , Seawater , Silicates , Uranium , Zirconium
SELECTION OF CITATIONS
SEARCH DETAIL
...