Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Emerg Infect Dis ; 29(11): 2238-2245, 2023 11.
Article in English | MEDLINE | ID: mdl-37877537

ABSTRACT

Marburg virus disease, caused by Marburg and Ravn orthomarburgviruses, emerges sporadically in sub-Saharan Africa and is often fatal in humans. The natural reservoir is the Egyptian rousette bat (ERB), which sheds virus in saliva, urine, and feces. Frugivorous ERBs discard test-bitten and partially eaten fruit, potentially leaving infectious virus behind that could be consumed by other susceptible animals or humans. Historically, 8 of 17 known Marburg virus disease outbreaks have been linked to human encroachment on ERB habitats, but no linkage exists for the other 9 outbreaks, raising the question of how bats and humans might intersect, leading to virus spillover. We used micro‒global positioning systems to identify nightly ERB foraging locations. ERBs from a known Marburg virus‒infected population traveled long distances to feed in cultivated fruit trees near homes. Our results show that ERB foraging behavior represents a Marburg virus spillover risk to humans and plausibly explains the origins of some past outbreaks.


Subject(s)
Chiroptera , Marburg Virus Disease , Marburgvirus , Animals , Humans , Marburg Virus Disease/epidemiology , Geographic Information Systems , Disease Outbreaks
2.
Parasit Vectors ; 16(1): 249, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37488618

ABSTRACT

BACKGROUND: The human-pathogenic Kasokero virus (KASV) circulates in an enzootic transmission cycle between Egyptian rousette bats (ERBs; Rousettus aegyptiacus) and their argasid tick ectoparasites, Ornithodoros (Reticulinasus) faini. Although tick salivary gland components have been shown to potentiate virus infection in vertebrate non-reservoirs (i.e. incidental hosts or small animal models of disease), there is a lack of information on the effect of tick salivary gland components on viral infection and shedding in vertebrate reservoirs. METHODS: To determine the impact of tick salivary gland components on KASV infection and shedding in ERBs, KASV loads were quantified in blood, oral swab, rectal swab, and urine specimens collected daily through 18 days post inoculation from groups of ERBs intradermally inoculated with KASV or KASV + O. (R.) faini tick salivary gland extract (SGE). RESULTS: Bats inoculated with KASV + tick SGE had significantly lower peak and cumulative KASV viremias and rectal shedding loads compared to bats inoculated with KASV only. CONCLUSIONS: We report for the first time to our knowledge that tick salivary gland components dampen arbovirus infection and shedding in a vertebrate reservoir. This study advances our understanding of biological factors underlying arbovirus maintenance in nature.


Subject(s)
Chiroptera , Marburgvirus , Ornithodoros , Animals , Humans , Salivary Glands , Viremia
3.
Vet Pathol ; 60(3): 324-335, 2023 05.
Article in English | MEDLINE | ID: mdl-36879492

ABSTRACT

Egyptian rousette bats (ERBs; Rousettus aegyptiacus; family Pteropodidae) are associated with a growing number of bunyaviruses of public health importance, including Kasokero virus (KASV), which was first identified as a zoonosis in Uganda in 1977. In this study, formalin-fixed paraffin-embedded tissues from a previous experiment in which KASV infection was confirmed in 18 experimentally infected ERBs were used for an in-depth analysis using histopathology, in situ hybridization (ISH) for detection of viral RNA, immunohistochemistry (IHC) to assess the mononuclear phagocyte system response, and quantitative digital image analysis to investigate virus clearance from the liver and spleen within a spatial context. Significant gross and histological lesions were limited to the liver, where KASV-infected bats developed mild to moderate, acute viral hepatitis, which was first observed at 3 days postinfection (DPI), peaked at 6 DPI, and was resolved by 20 DPI. A subset of bats had glycogen depletion (n = 10) and hepatic necrosis (n = 3), rarely with intralesional bacteria (n = 1). Virus replication was confirmed by ISH in the liver, spleen, lymph nodes, and tongue. In the liver, KASV replicated in the cytoplasm of hepatocytes, to a lesser extent in mononuclear phagocytes, and rarely in presumptive endothelial cells. Most KASV RNA, as detected by ISH, was cleared from the spleen and liver by 6 DPI. It is concluded that ERBs have effective mechanisms to respond to this virus, clearing it without evidence of clinical disease.


Subject(s)
Chiroptera , Virus Diseases , Animals , Disease Reservoirs , Endothelial Cells , Virus Diseases/veterinary , Liver/pathology , RNA, Viral
4.
Sci Rep ; 12(1): 20936, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463252

ABSTRACT

The human-pathogenic Kasokero virus (KASV; genus Orthonairovirus) has been isolated from the sera of Egyptian rousette bats (ERBs; Rousettus aegyptiacus) captured in Uganda and unengorged Ornithodoros (Reticulinasus) faini ticks collected from the rock crevices of ERB colonies in South Africa and Uganda. Although evidence suggests that KASV is maintained in an enzootic transmission cycle between O. (R.) faini ticks and ERBs with potential for incidental virus spillover to humans through the bite of an infected tick, the vertebrate reservoir status of ERBs for KASV has never been experimentally evaluated. Furthermore, the potential for bat-to-bat and bat-to-human transmission of KASV is unknown. Herein, we inoculate two groups of ERBs with KASV; one group of bats is serially sampled to assess viremia, oral, fecal, and urinary shedding and the second group of bats is serially euthanized to assess virus-tissue tropism. Throughout the study, none of the bats exhibit overt signs of clinical disease. Following the detection of high KASV loads of long duration in blood, oral, fecal, and urine specimens collected from ERBs in the serial sampling group, all bats seroconvert to KASV. ERBs from the serial euthanasia group exhibit high KASV loads indicative of virus replication in the skin at the inoculation site, spleen, and inguinal lymph node tissue, and histopathology and in situ hybridization reveal virus replication in the liver and self-limiting, KASV-induced lymphohistiocytic hepatitis. The results of this study suggest that ERBs are competent, natural vertebrate reservoir hosts for KASV that can sustain viremias of appropriate magnitude and duration to support virus maintenance through bat-tick-bat transmission cycles. Viral shedding data suggests that KASV might also be transmitted bat-to-bat and highlights the potential for KASV spillover to humans through contact with infectious oral secretions, feces, or urine.


Subject(s)
Chiroptera , Nairovirus , Ornithodoros , Humans , Animals , Zoonoses , Feces , Viremia
5.
N Engl J Med ; 386(24): 2283-2294, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35704480

ABSTRACT

BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.).


Subject(s)
Arenaviruses, New World , Hemorrhagic Fever, American , RNA, Viral , Rodentia , Animals , Arenaviruses, New World/genetics , Arenaviruses, New World/isolation & purification , Bolivia/epidemiology , Cross Infection/transmission , Cross Infection/virology , Disease Transmission, Infectious , Hemorrhagic Fever, American/complications , Hemorrhagic Fever, American/genetics , Hemorrhagic Fever, American/transmission , Hemorrhagic Fever, American/virology , Hemorrhagic Fevers, Viral/genetics , Hemorrhagic Fevers, Viral/transmission , Hemorrhagic Fevers, Viral/virology , High-Throughput Nucleotide Sequencing , Humans , Polymerase Chain Reaction , RNA, Viral/genetics , RNA, Viral/isolation & purification , Rats/virology , Rodentia/virology , Viral Zoonoses/transmission , Viral Zoonoses/virology
6.
Emerg Infect Dis ; 27(2): 653-655, 2021.
Article in English | MEDLINE | ID: mdl-33496248

ABSTRACT

The epidemiology of Rift Valley fever virus (RVFV) and Crimean-Congo hemorrhagic fever virus (CCHFV) in Jordan is unknown. Our investigation showed 3% of 989 tested dairy cattle, sheep, and goats were RVFV seropositive and 14% were CCHFV seropositive. Ongoing surveillance is needed to assess risk to humans and protect public health.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean/epidemiology , Rift Valley Fever/epidemiology , Rift Valley fever virus , Animals , Antibodies, Viral , Cattle , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Hemorrhagic Fever, Crimean/veterinary , Jordan/epidemiology , Rift Valley fever virus/immunology , Ruminants , Sheep , Zoonoses
7.
Open Forum Infect Dis ; 6(10): ofz404, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31660366

ABSTRACT

Seoul orthohantavirus (SEOV) infections, uncommonly reported in the United States, often result in mild illness. We report a case of hemophagocytic lymphohistiocytosis secondary to SEOV infection that was domestically acquired in Washington, DC.

10.
Genome Announc ; 4(2)2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26966213

ABSTRACT

Draft genome sequences of Elizabethkingia meningoseptica and representatives of each of its four historically described genomospecies were sequenced here. Preliminary analysis suggests that Elizabethkingia miricola belongs to genomospecies 2, and both Elizabethkingia anophelis and Elizabethkingia endophytica are most similar to genomospecies 1.

11.
J Clin Microbiol ; 50(11): 3591-7, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22933599

ABSTRACT

Ninety-seven animal, human, and dairy Streptococcus porcinus or Streptococcus pseudoporcinus isolates in the CDC Streptococcus strain collection were evaluated on the basis of DNA-DNA reassociation, 16S rRNA and rpoB gene sequencing, conventional biochemical and Rapid ID 32 Strep identification methods, and antimicrobial susceptibility testing to determine their taxonomic status, characteristics for species differentiation, antimicrobial susceptibility, and relevance of clinical source. Nineteen of the 97 isolates (1 human, 18 swine) were identified as S. porcinus. The remaining 72 human isolates and 6 dairy isolates were identified as S. pseudoporcinus. The use of 16S rRNA or rpoB gene sequencing was required to differentiate S. porcinus from S. pseudoporcinus. The human and dairy S. pseudoporcinus isolates were biochemically distinct from each other as well as distinct by 16S rRNA and rpoB gene sequencing. Therefore, we propose the subspecies denominations S. pseudoporcinus subsp. hominis subsp. nov. for the human isolates and S. pseudoporcinus subsp. lactis subsp. nov. for the dairy isolates. Most strains were susceptible to the antimicrobials tested, with the exception of tetracycline. Two strains of each species were also resistant to clindamycin and erythromycin and carried the erm(A) (S. pseudoporcinus) or the erm(B) (S. porcinus) gene. S. porcinus was identified from a single human isolate recovered from a wound in an abattoir worker. S. pseudoporcinus was primarily isolated from the genitourinary tract of women but was also associated with blood, placental, and wound infections. Isolates reacting with group B antiserum and demonstrating wide beta-hemolysis should be suspected of being S. pseudoporcinus and not S. agalactiae.


Subject(s)
Streptococcus/classification , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Typing Techniques , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA-Directed RNA Polymerases/genetics , Dairy Products/microbiology , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests , Molecular Sequence Data , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcus/drug effects , Streptococcus/genetics , Streptococcus/isolation & purification
12.
J Clin Microbiol ; 50(4): 1484-6, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22278841

ABSTRACT

Streptomyces cacaoi subsp. cacaoi, a Gram-positive, branching filamentous bacteria, was isolated from a scalp infection in a patient from Pondicherry, India. Phenotypic tests identified the isolate as a Streptomyces species, but 16S rRNA sequence analysis provided the species identification required for tracking of this emerging pathogen.


Subject(s)
Scalp Dermatoses/diagnosis , Streptomyces , Adult , Female , HIV Infections/complications , HIV Infections/diagnosis , Humans , Microbial Sensitivity Tests , Molecular Diagnostic Techniques , Molecular Sequence Data , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Scalp Dermatoses/microbiology , Sequence Analysis, DNA , Streptomyces/drug effects , Streptomyces/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...