Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 917: 170168, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38244628

ABSTRACT

The European Union is among the top wheat producers in the world, but its productivity relies on adequate soil fertilisation. Biofertilisers, either alone or in combination with biochar, can be a preferable alternative to chemical fertilisers. However, the addition of biofertilisers, specifically plant growth promoting microbes (PGPM), could modify grain composition, and/or deteriorate the soil composition. In this study, the two wheat cultivars Triticum aestivum (Bramante) and T. durum (Svevo) were cultivated in open fields for two consecutive years in the presence of a commercial PGPM mix supplied alone or in combination with biochar. An in-depth analysis was conducted by collecting physiological and agronomic data throughout the growth period. The effects of PGPM and biochar were investigated in detail; specifically, soil chemistry and rhizosphere microbial composition were characterized, along with the treatment effects on seed storage proteins. The results demonstrated that the addition of commercial microbial consortia and biochar, alone or in combination, did not modify the rhizospheric microbial community; however, it increased grain yield, especially in the cultivar Svevo (increase of 6.8 %-13.6 %), even though the factors driving the most variations were associated with both climate and cultivar. The total gluten content of the flours was not affected, whereas the main effect of the treatments was a variation in gliadins and low-molecular-weight-glutenin subunits in both cultivars when treated with PGPM and biochar. This suggested improved grain quality, especially regarding the viscoelastic properties of the dough, when the filling period occurred in a dry climate. The results indicate that the application of biofertilisers and biochar may aid the effective management of sustainable wheat cultivation, to support environmental health without altering the biodiversity of the resident microbiome.


Subject(s)
Microbial Consortia , Triticum , Edible Grain , Charcoal/pharmacology , Soil/chemistry
2.
J Agric Food Chem ; 71(41): 15407-15416, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37796632

ABSTRACT

Sustainable agriculture aims at achieving a healthy food production while reducing the use of fertilizers and greenhouse gas emissions using biostimulants and soil amendments. Untargeted metabolomics by ultra-high performance liquid chromatography-ion mobility-high-resolution mass spectrometry, operating in a high-definition MSE mode, was applied to investigate the metabolome of durum wheat in response to sustainable treatments, i.e., the addition of biochar, commercial plant growth promoting microbes, and their combination. Partial least squares-discriminant analysis provided a good discrimination among treatments with sensitivity, specificity, and a non-error rate close to 1. A total of 88 and 45 discriminant compounds having biological, nutritional, and technological implications were tentatively identified in samples grown in 2020 and 2021. The addition of biochar-biostimulants produced the highest up-regulation of lipids and flavonoids, with the glycolipid desaturation being the most impacted pathway, whereas carbohydrates were mostly down-regulated. The findings achieved suggest the safe use of the combined biochar-biostimulant treatment for sustainable wheat cultivation.


Subject(s)
Metabolomics , Triticum , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , Mass Spectrometry/methods
3.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142289

ABSTRACT

Commodity crops, such as wheat and maize, are extremely dependent on chemical fertilizers, a practice contributing greatly to the increase in the contaminants in soil and water. Promising solutions are biofertilizers, i.e., microbial biostimulants that when supplemented with soil stimulate plant growth and production. Moreover, the biofertilizers can be fortified when (i) provided as multifunctional consortia and (ii) combined with biochar with a high cargo capacity. The aim of this work was to determine the molecular effects on the soil microbiome of different biofertilizers and delivery systems, highlight their physiological effects and merge the data with statistical analyses. The measurements of the physiological parameters (i.e., shoot and root biomass), transcriptomic response of genes involved in essential pathways, and characterization of the rhizosphere population were analyzed. The results demonstrated that wheat and maize supplemented with different combinations of selected microbial consortia and biochar have a positive effect on plant growth in terms of shoot and root biomass; the treatments also had a beneficial influence on the biodiversity of the indigenous rhizo-microbial community, reinforcing the connection between microbes and plants without further spreading contaminants. There was also evidence at the transcriptional level of crosstalk between microbiota and plants.


Subject(s)
Triticum , Zea mays , Charcoal/chemistry , Fertilizers/analysis , Gene Expression , Plant Roots , Soil/chemistry , Soil Microbiology , Triticum/genetics , Water/metabolism , Zea mays/metabolism
4.
Acta Biomed ; 93(3): e2022133, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35775757

ABSTRACT

BACKGROUND AND AIM: Cystic fibrosis (CF), is due to CF transmembrane conductance regulator (CFTR) loss of function, and is associated with comorbidities. The increasing longevity of CF patients has been associated with increased cancer risk besides the other known comorbidities. The significant heterogeneity among patients, suggests potential epigenetic regulation. Little attention has been given to how CFTR influences microRNA (miRNA) expression and how this may impact on biological processes and pathways. METHODS: We assessed the changes in miRNAs and subsequently identified the affected molecular pathways using CFBE41o-, and IB3 human immortalized cell lines since they reflect the most common genetic mutations in CF patients, and 16HBE14o- cells were used as controls. RESULTS: In the CF cell lines, 41 miRNAs showed significant changes (FC (log2) ≥ +2 or FC (log2) ≤ -2 and p-value≤0.05). Gene target analysis evidenced 511 validated miRNA target genes. Gene Ontology analysis evidenced cancer, inflammation, body growth, glucose, and lipid metabolism as the biological processes most impacted by these miRNAs. Protein-protein interaction and pathway analysis highlighted 50 significantly enriched pathways among which RAS, TGF beta, JAK/STAT and insulin signaling. CONCLUSIONS: CFTR loss of function is associated with changes in the miRNA network, which regulates genes involved in the major comorbidities that affect CF patients suggesting that further research is warranted.


Subject(s)
Biological Phenomena , Cystic Fibrosis , MicroRNAs , Neoplasms , Cell Line , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epigenesis, Genetic , Fertility , Glucose , Humans , Inflammation/genetics , Lipid Metabolism/genetics , MicroRNAs/genetics , Neoplasms/complications
5.
Nutrients ; 12(11)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233787

ABSTRACT

The reasons behind the increasing prevalence of celiac disease (CD) worldwide are still not fully understood. This study adopted a multilevel approach (in vitro, ex vivo, in vivo) to assess the potential of gluten from different wheat varieties in triggering CD. Peptides triggering CD were identified and quantified in mixtures generated from simulated gastrointestinal digestion of wheat varieties (n = 82). Multivariate statistics enabled the discrimination of varieties generating low impact on CD (e.g., Saragolla) and high impact (e.g., Cappelli). Enrolled subjects (n = 46) were: 19 healthy subjects included in the control group; 27 celiac patients enrolled for the in vivo phase. Celiacs were divided into a gluten-free diet group (CD-GFD), and a GFD with Saragolla-based pasta group (CD-Sar). The diet was followed for 3 months. Data were compared between CD-Sar and CD-GFD before and after the experimental diet, demonstrating a limited ability of Saragolla to trigger immunity, although not comparable to a GFD. Ex vivo studies showed that Saragolla and Cappelli activated immune responses, although with great variability among patients. The diverse potential of durum wheat varieties in triggering CD immune response was demonstrated. Saragolla is not indicated for celiacs, yet it has a limited potential to trigger adverse immune response.


Subject(s)
Celiac Disease/diet therapy , Glutens/therapeutic use , Triticum/chemistry , Adolescent , Adult , Aged , Celiac Disease/immunology , Child , Child, Preschool , Diet, Gluten-Free , Digestion , Female , Glutens/administration & dosage , Humans , Immunity , Italy , Male , Middle Aged , Peptides , Young Adult
6.
Food Sci Nutr ; 8(4): 1788-1797, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32328244

ABSTRACT

Rice consumption is rising in western countries with the adoption of new nutritional styles, which require the avoidance of gluten. Nevertheless, there are reports of rice allergic reactions. Rice grains contain a low amount of proteins most of which are storage proteins represented by glutelins, prolamins, albumins, and globulins. Some of these proteins are seed allergenic proteins as α-amylase/trypsin inhibitor, globulins, ß-glyoxylase, and several glutelins. Italy is the major rice producer in Europe, and for this, seed reserve proteins of four Italian rice cultivars were characterized by 2D-GE analysis. Some differentially abundant proteins were identified and classified as allergenic proteins, prompting a further characterization of the genes encoding some of these proteins. In particular, a deletion in the promoter region of the 19 KDa globulin gene has been identified, which may be responsible for the different abundance of the protein in the Karnak cultivar. This polymorphism can be applied for cultivar identification in commercial samples. Seed proteome was characterized by a variable combination of several proteins, which may determine a different allergenic potential. Proteomic and genomic allowed to identify the protein profile of four commercial cultivars and to develop a molecular marker useful for the analysis of commercial products.

7.
Foods ; 9(3)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182868

ABSTRACT

Durum wheat is an important food source in Mediterranean countries, and Italy is the major producer of durum wheat in Europe. The quality of durum wheat flours depends on the type and amount of gluten proteins and starch while flour nutritional value rests on metabolite contents such as polyphenols. In this work, two Italian cultivars, Iride and Svevo, were analyzed for two years (2016-2017) in four Italian regions to explore how the environment affects: (i) reserve proteome; (ii) starch content and composition; and (iii) free, conjugated, bound phenolics and antioxidant capacity. The impact of environmental and meteorological conditions was significant for many traits. Regardless of the cultivation site, in 2017, a year with less rainfall and a higher temperature during grain filling, there was an increase in low molecular weight glutenins, in the glutenin/gliadin ratio and in the A-type starch granules size, all parameters of higher technological quality. In the same year, the cultivars showed higher amounts of polyphenols and antioxidant capacity. In conclusion, the two wheat cultivars, selected for their medium to high yield and their good quality, had higher performances in 2017 regardless of their sowing locations.

8.
J Agric Food Chem ; 67(8): 2384-2395, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30742427

ABSTRACT

Durum wheat ( Triticum turgidum L. subsp. durum (Desf.) Husn) is a major food source in Mediterranean countries since it is utilized for the production of pasta, leavened and unleavened breads, couscous, and other traditional foods. The technological and nutritional properties of durum wheat semolina depend mainly on the type of gluten proteins and on their amount, which is a genotype- and environment-dependent trait. Gluten proteins are also responsible for celiac disease (CD), an autoimmune enteropathy with a prevalence of about 0.7-2% in the human population. At this purpose, two Italian durum wheat cultivars, Saragolla and Cappelli, currently used for monovarietal pasta, were chosen to compare (i) the reserve and embryo proteome, (ii) the free and bound phenolics, antioxidant activity, and amino acid composition, and (iii) the content of immunogenic peptides produced after a simulated gastrointestinal digestion. The results obtained from 2 years of field cultivation on average showed a higher amount of gluten proteins, amino acids, and immunogenic peptides in Cappelli. Saragolla showed a higher abundance in bound phenolics, antioxidant enzymes, and stress response proteins in line with its higher antioxidant activity. However, the impact of the year of cultivation, largely depending on varying rainfall regimes through the wheat growth cycle, was significant for most of the parameters investigated. Differences in technological and nutritional characteristics observed between the two cultivars are discussed in relation to the influence of genetic and environmental factors.


Subject(s)
Triticum/chemistry , Triticum/genetics , Amino Acids/chemistry , Environment , Italy , Nutritive Value , Phenols/chemistry , Quality Control , Triticum/classification , Triticum/growth & development
9.
J Sci Food Agric ; 98(8): 3129-3139, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29210450

ABSTRACT

BACKGROUND: Food traceability becomes lifesaving for persons suffering severe allergy or intolerance, and therefore need a complete avoidance of the immune-trigger food. This paper describes how to fingerprint the presence of some allergenic species (kiwi, peach, and apple) in foods by quantitative real-time PCR (qPCR). RESULTS: Five DNA extraction procedures were tested on fruits and foods. The results were statistically evaluated, and discussed. Analysis by qPCR with SYBR Green was developed to detect traces of these allergenic species in foods. Plasmids containing the target sequences of kiwi, peach and apple were employed as internal reference standard. Analysis of spiked food samples showed a limit of detection of 25 mg kg-1 for kiwi, 20 mg kg-1 for peach and 50 mg kg-1 for apple. CONCLUSION: The qPCR method here developed, combined with the use of internal plasmid reference standard, represents a specific system for the quick detection of allergenic species in complex food matrices, with a limit of detection comparable with those reported using more time-consuming methods. © 2017 Society of Chemical Industry.


Subject(s)
Fast Foods/analysis , Food Contamination/analysis , Malus/genetics , Prunus persica/genetics , Real-Time Polymerase Chain Reaction/methods , Actinidia/immunology , Fruit/genetics , Fruit/immunology , Malus/immunology , Plant Proteins/genetics , Plant Proteins/immunology , Prunus persica/immunology
10.
Toxicol Sci ; 156(2): 538-548, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28087837

ABSTRACT

Over the past years, the use of antidepressants and neuroleptics has steadily increased. Although incredibly useful to treat disorders like depression, schizophrenia, epilepsy, or mental retardation, these drugs display many side effects. Toxicogenomic studies aim to limit this problem by trying to identify cellular targets and off-targets of medical compounds. The baker yeast Saccharomyces cerevisiae has been shown to be a key player in this approach, as it represents an incredible toolbox for the dissection of complex biological processes. Moreover, the evolutionary conservation of many pathways allows the translation of yeast data to the human system. In this paper, a better attention was paid to chlorpromazine, as it still is one of the most widely used drug in therapy. The results of a toxicogenomic screening performed on a yeast mutants collection treated with chlorpromazine were instrumental to identify a set of genes for further analyses. For this purpose, a multidisciplinary approach was used based on growth phenotypes identification, Gene Ontology search, and network analysis. Then, the impacts of three antidepressants (imipramine, doxepin, and nortriptyline) and three neuroleptics (promazine, chlorpromazine, and promethazine) on S. cerevisiae were compared through physiological analyses, microscopy characterization, and transcriptomic studies. Data highlight key differences between neuroleptics and antidepressants, but also between the individual molecules. By performing a network analysis on the human homologous genes, it emerged that genes and proteins involved in the Notch pathway are possible off-targets of these molecules, along with key regulatory proteins.


Subject(s)
Antidepressive Agents/toxicity , Antipsychotic Agents/toxicity , Chlorpromazine/toxicity , Gene Regulatory Networks/drug effects , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/drug effects , Gene Ontology , Genome-Wide Association Study , Microbial Sensitivity Tests , Protein Interaction Maps , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Toxicogenetics
11.
Chemosphere ; 145: 470-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26694798

ABSTRACT

A genome-wide screen of a haploid deletion library of bakers' yeast (Saccharomyces cerevisiae) was conducted to document the phenotypic and transcriptional impact of exposure to each of the two pharmaceutical products 5-fluorouracil (an anti-tumor agent) and nystatin (an anti-fungal agent). The combined data set was handled by applying a systems biology perspective. A Gene Ontology analysis identified functional categories previously characterized as likely targets for both compounds. Induced transcription profiles were well correlated in yeast and human HepG2 cells. The identified molecular targets for both compounds were used to suggest a small set of human orthologues as appropriate for testing on human material. The yeast system developed here (denoted "Toxichip") has likely utility for identifying biomarkers relevant for health and environmental risk assessment applications required as part of the development process for novel pharmaceuticals.


Subject(s)
Antifungal Agents/toxicity , Antineoplastic Agents/toxicity , Fluorouracil/toxicity , Nystatin/toxicity , Saccharomyces cerevisiae/drug effects , Toxicity Tests/methods , Biomarkers , Humans , Risk Assessment , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Systems Biology , Transcription, Genetic
12.
Int J Food Sci Nutr ; 66(5): 553-8, 2015.
Article in English | MEDLINE | ID: mdl-26008718

ABSTRACT

The aim of our study was to determine the antioxidant activities, cytotoxicity and proliferative properties in Stevia rebaudiana leaves and stems. Leaves extracts exhibited a higher antioxidant activity than stems extract, through oxygen radical absorbance capacity (ORAC) and cellular antioxidant activity (CAA) assays. Stevioside and rebaudioside A, the main sweetening metabolites in stevia leaves, exhibited a low ORAC value in comparison with plant extracts, while did not elicit any CAA. Stevia rebaudiana did not exhibit toxicity against HepG2 (hepatocellular carcinoma) human cells. No proliferative nor catalase modulations were observed in cells treated with such extracts. Our findings support the promising role of stevia that, apart from its sweetness, can act as a source of antioxidants, even at the intracellular level. This activity makes S. rebaudiana crude extract an interesting resource of natural sweetness with antioxidant properties which may find numerous applications in foods and nutritional supplements industries.


Subject(s)
Antioxidants/pharmacology , Plant Extracts/pharmacology , Stevia/chemistry , Diterpenes, Kaurane/pharmacology , Glucosides/pharmacology , Hep G2 Cells , Humans , Plant Leaves , Plant Stems , Sweetening Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...