Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36232306

ABSTRACT

A strict interplay is known to involve copper and zinc in many cellular processes. For this reason, the results of copper's interaction with zinc binding proteins are of great interest. For instance, copper interferences with the DNA-binding activity of zinc finger proteins are associated with the development of a variety of diseases. The biological impact of copper depends on the chemical properties of its two common oxidation states (Cu(I) and Cu(II)). In this framework, following the attention addressed to unveil the effect of metal ion replacement in zinc fingers and in zinc-containing proteins, we explore the effects of the Zn(II) to Cu(I) or Cu(II) replacement in the prokaryotic zinc finger domain. The prokaryotic zinc finger protein Ros, involved in the horizontal transfer of genes from A. tumefaciens to a host plant infected by it, belongs to a family of proteins, namely Ros/MucR, whose members have been recognized in different bacteria symbionts and pathogens of mammals and plants. Interestingly, the amino acids of the coordination sphere are poorly conserved in most of these proteins, although their sequence identity can be very high. In fact, some members of this family of proteins do not bind zinc or any other metal, but assume a 3D structure similar to that of Ros with the residues replacing the zinc ligands, forming a network of hydrogen bonds and hydrophobic interactions that surrogates the Zn-coordinating role. These peculiar features of the Ros ZF domain prompted us to study the metal ion replacement with ions that have different electronic configuration and ionic radius. The protein was intensely studied as a perfectly suited model of a metal-binding protein to study the effects of the metal ion replacement; it appeared to tolerate the Zn to Cd substitution, but not the replacement of the wildtype metal by Ni(II), Pb(II) and Hg(II). The structural characterization reported here gives a high-resolution description of the interaction of copper with Ros, demonstrating that copper, in both oxidation states, binds the protein, but the replacement does not give rise to a functional domain.


Subject(s)
Mercury , Zinc , Amino Acids , Cadmium , Copper/chemistry , DNA/metabolism , Ions , Lead , Proteins , Zinc/metabolism , Zinc Fingers
2.
Sci Rep ; 10(1): 21067, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273582

ABSTRACT

Downhill folding has been defined as a unique thermodynamic process involving a conformations ensemble that progressively loses structure with the decrease of protein stability. Downhill folders are estimated to be rather rare in nature as they miss an energetically substantial folding barrier that can protect against aggregation and proteolysis. We have previously demonstrated that the prokaryotic zinc finger protein Ros87 shows a bipartite folding/unfolding process in which a metal binding intermediate converts to the native structure through a delicate barrier-less downhill transition. Significant variation in folding scenarios can be detected within protein families with high sequence identity and very similar folds and for the same sequence by varying conditions. For this reason, we here show, by means of DSC, CD and NMR, that also in different pH and ionic strength conditions Ros87 retains its partly downhill folding scenario demonstrating that, at least in metallo-proteins, the downhill mechanism can be found under a much wider range of conditions and coupled to other different transitions. We also show that mutations of Ros87 zinc coordination sphere produces a different folding scenario demonstrating that the organization of the metal ion core is determinant in the folding process of this family of proteins.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Protein Folding , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Unfolding , Thermodynamics
3.
Int J Mol Sci ; 21(21)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167398

ABSTRACT

The structural effects of zinc replacement by xenobiotic metal ions have been widely studied in several eukaryotic and prokaryotic zinc-finger-containing proteins. The prokaryotic zinc finger, that presents a bigger ßßßαα domain with a larger hydrophobic core with respect to its eukaryotic counterpart, represents a valuable model protein to study metal ion interaction with metallo-proteins. Several studies have been conducted on Ros87, the DNA binding domain of the prokaryotic zinc finger Ros, and have demonstrated that the domain appears to structurally tolerate Ni(II), albeit with important structural perturbations, but not Pb(II) and Hg(II), and it is in vitro functional when the zinc ion is replaced by Cd(II). We have previously shown that Ros87 unfolding is a two-step process in which a zinc binding intermediate converts to the native structure thorough a delicate downhill folding transition. Here, we explore the folding/unfolding behaviour of Ros87 coordinated to Co(II), Ni(II) or Cd(II), by UV-Vis, CD, DSC and NMR techniques. Interestingly, we show how the substitution of the native metal ion results in complete different folding scenarios. We found a two-state unfolding mechanism for Cd-Ros87 whose metal affinity Kd is comparable to the one obtained for the native Zn-Ros87, and a more complex mechanism for Co-Ros87 and Ni-Ros87, that show higher Kd values. Our data outline the complex cross-correlation between the protein-metal ion equilibrium and the folding mechanism proposing such an interplay as a key factor in the proper metal ion selection by a specific metallo-protein.


Subject(s)
Cadmium/chemistry , Cobalt/chemistry , Nickel/chemistry , Protein Folding/drug effects , Repressor Proteins , Zinc/chemistry , Agrobacterium tumefaciens , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites/drug effects , Cadmium/metabolism , Cadmium/pharmacology , Cobalt/metabolism , Cobalt/pharmacology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Nickel/metabolism , Nickel/pharmacology , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Spectrophotometry, Ultraviolet , Thermodynamics , Zinc/metabolism , Zinc Fingers
4.
Sci Rep ; 10(1): 9283, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32518326

ABSTRACT

Ros/MucR is a widespread family of bacterial zinc-finger (ZF) containing proteins that integrate multiple functions such as virulence, symbiosis and/or cell cycle transcription. NMR solution structure of Ros DNA-binding domain (region 56-142, i.e. Ros87) has been solved by our group and shows that the prokaryotic ZF domain shows interesting structural and functional features that differentiate it from its eukaryotic counterpart as it folds in a significantly larger zinc-binding globular domain. We have recently proposed a novel functional model for this family of proteins suggesting that they may act as H-NS-'like' gene silencers. Indeed, the N-terminal region of this family of proteins appears to be responsible for the formation of functional oligomers. No structural characterization of the Ros N-terminal domain (region 1-55) is available to date, mainly because of serious solubility problems of the full-length protein. Here we report the first structural characterization of the N-terminal domain of the prokaryotic ZF family examining by means of MD and NMR the structural preferences of the full-length Ros protein from Agrobacterium tumefaciens.


Subject(s)
Agrobacterium tumefaciens/metabolism , DNA-Binding Proteins/genetics , Protein Domains , Protein Structure, Secondary/genetics , Zinc Fingers/genetics , Agrobacterium tumefaciens/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , DNA-Binding Proteins/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular
SELECTION OF CITATIONS
SEARCH DETAIL
...