Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 4(12): 856-71, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12534468

ABSTRACT

The TOL plasmid pWW0 (117 kb) is the best studied catabolic plasmid and the archetype of the IncP-9 plasmid incompatibility group from Pseudomonas. It carries the degradative (xyl) genes for toluenes and xylenes within catabolic transposons Tn4651 and Tn4653. Analysis of the complete pWW0 nucleotide sequence revealed 148 putative open reading frames. Of these, 77 showed similarity to published sequences in the available databases predicting functions for: plasmid replication, stable maintenance and transfer; phenotypic determinants; gene regulation and expression; and transposition. All identifiable transposition functions lay within the boundaries of the 70 kb transposon Tn4653, leaving a 46 kb sector containing all the IncP-9 core functions. The replicon and stable inheritance region was very similar to the mini-replicon from IncP-9 antibiotic resistance plasmid pM3, with their Rep proteins forming a novel group of initiation proteins. pWW0 transfer functions exist as two blocks encoding putative DNA processing and mating pair formation genes, with organizational and sequence similarity to IncW plasmids. In addition to the known Tn4651 and IS1246 elements, two additional transposable elements were identified as well as several putative transposition functions, which are probably genetic remnants from previous transposition events. Genes likely to be responsible for known resistance to ultraviolet light and free radicals were identified. Other putative phenotypic functions identified included resistance to mercury and other metal ions, as well as to quaternary ammonium compounds. The complexity and size of pWW0 is largely the result of the mosaic organization of the transposable elements that it carries, rather than the backbone functions of IncP-9 plasmids.


Subject(s)
DNA, Bacterial/genetics , Genes, Bacterial/genetics , Plasmids/genetics , Pseudomonas putida/genetics , Bacterial Proteins/genetics , Base Composition , Base Sequence , DNA, Bacterial/analysis , Molecular Sequence Data , Open Reading Frames/genetics
2.
Microbiology (Reading) ; 146 ( Pt 9): 2249-2258, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10974112

ABSTRACT

Little is known of the transfer and maintenance machinery of the IncP-9 plasmids, which are found in Pseudomonas spp. and include both degradative and resistance plasmids. One such plasmid, pM3, which confers resistance to streptomycin and tetracycline, was found repeatedly in Pseudomonas species from numerous locations in Belarus. pM3 has a broad host range, but is unable to replicate in enterobacteria at 37 degrees C and above. A mini derivative, pMT2, was constructed by partial PstI digestion and ligation with a fragment encoding Km(R). The complete sequence of pMT2 was determined. Analysis of its 8526 bp of pM3 DNA revealed several ORFs whose predicted polypeptide products were found to have similarity to previously analysed proteins involved in plasmid replication (rep gene), transfer (mpf; mating-pair formation gene) and stable maintenance (par, mrs genes). The organization of these genes showed similarity to several plasmid systems including the Ti and pSYM plasmids as well as IncP-1 plasmids. Subcloning narrowed down the region required for replication, and identified the putative rep gene and putative par promoter region as able to express incompatibility. rep deletion mutants were lost from the cell line, and expression of the rep gene was shown to be controlled by negative autoregulation. A pMT2 derivative with an insertion between the rep and par genes showed very weak, if any, ability to replicate autonomously, suggesting that plasmid maintenance may depend on a close interaction of rep and par functions.


Subject(s)
Bacterial Proteins/genetics , DNA Replication , DNA-Binding Proteins , Pseudomonas/genetics , R Factors/genetics , R Factors/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , DNA Helicases/genetics , DNA Helicases/metabolism , Molecular Sequence Data , Open Reading Frames , Pseudomonas/drug effects , Recombinases , Replicon , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sequence Analysis, DNA , Trans-Activators/genetics , Trans-Activators/metabolism , Transposases/genetics , Transposases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...