Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 66(12): 2563-2574, 2018 12.
Article in English | MEDLINE | ID: mdl-30325063

ABSTRACT

Microglial activation, increased proinflammatory cytokine production, and a reduction in synaptic density are key pathological features associated with HIV-associated neurocognitive disorders (HAND). Even with combination antiretroviral therapy (cART), more than 50% of HIV-positive individuals experience some type of cognitive impairment. Although viral replication is inhibited by cART, HIV proteins such as Tat are still produced within the nervous system that are neurotoxic, involved in synapse elimination, and provoke enduring neuroinflammation. As complement deposition on synapses followed by microglial engulfment has been shown during normal development and disease to be a mechanism for pruning synapses, we have tested whether complement is required for the loss of synapses that occurs after a cortical Tat injection mouse model of HAND. In Tat-injected animals evaluated 7 or 28 days after injection, levels of early complement pathway components, C1q and C3, are significantly elevated and associated with microgliosis and a loss of synapses. However, C1qa knockout mice have the same level of Tat-induced synapse loss as wild-type (WT) mice, showing that the C1q-initiated classical complement cascade is not driving synapse removal during HIV1 Tat-induced neuroinflammation.


Subject(s)
Cognitive Dysfunction/pathology , Complement C1q/metabolism , HIV Infections/complications , Synapses/drug effects , tat Gene Products, Human Immunodeficiency Virus/pharmacology , Animals , Bone Marrow/metabolism , Bone Marrow Transplantation , Calcium-Binding Proteins/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/virology , Complement C1q/genetics , Complement C3/pharmacology , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gliosis/chemically induced , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Nerve Tissue Proteins/metabolism , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Synapses/metabolism , Synapses/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...