Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 13(23): 10462-10467, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34076660

ABSTRACT

Fluorophores functionalized with heavy elements show enhanced intersystem crossing due to increased spin-orbit coupling, which in turn shortens the fluorescence decay lifetime (τPL). This phenomenon is known as the heavy-atom effect (HAE). Here, we report the observation of increased τPL upon functionalisation of near-infrared photoluminescent gold nanoclusters with iodine. The heavy atom-mediated increase in τPL is in striking contrast with the HAE and referred to as inverse HAE. Femtosecond and nanosecond transient absorption spectroscopy revealed overcompensation of a slight decrease in lifetime of the transition associated with the Au core (ps) by a large increase in the long-lived triplet state lifetime associated with the Au shell, which contributed to the observed inverse HAE. This unique observation of inverse HAE in gold nanoclusters provides the means to enhance the triplet excited state lifetime.

2.
Nanoscale ; 13(26): 11576, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34190305

ABSTRACT

Correction for 'Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters' by Goutam Pramanik et al., Nanoscale, 2021, DOI: 10.1039/d1nr02440j.

3.
Phys Chem Chem Phys ; 23(20): 11954-11960, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34002180

ABSTRACT

The optical properties of colloidal near-infrared (NIR) emitting gold nanoclusters (AuNCs) are thoroughly investigated at variable temperatures and excitation powers. Both absorption and photoluminescence (PL) excitation spectra reveal optical transitions expected from literature models of thiolated AuNCs - with the exception of the lowest energy transition which has the form of a featureless absorption tail partially overlapping with the PL band. The absorption cross section is determined via the PL saturation and PL modulation techniques to be in the range of 2-3 × 10-14 cm2 for excitation at 405 nm (relatively large value for such small clusters) and decreases ∼20 times toward 633 nm. Slow transient quenching (perfectly reversible) of PL is observed when the excitation power exceeds the saturation threshold, i.e. when the probability of achieving the second absorption in an excited AuNC before its relaxation is significant. A stable PL quenched level is reached within a fraction of a minute or a few minutes after the start of the excitation. Similar time intervals are needed for AuNCs to relax back to the original state in the dark. By comparing thermally-induced and light-induced PL decreases and PL kinetics speed up, we conclude that the transient quenching is due to heating caused by the dissipated excitation power. The light-induced PL amplitude reduction is much stronger (up to ∼80% under 405 nm, 60 W cm-2 excitation) than changes in PL decay time (∼20%), which is due to PL blinking and PL switching-off in a fraction of the AuNC ensemble. The potential application of these AuNCs in nanothermometry is discussed.

5.
Faraday Discuss ; 222(0): 274-293, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32108199

ABSTRACT

Power-dependent photoluminescence (PL) decay kinetics of silicon nanocrystals (Si NCs) in solid and liquid samples were studied under cw and pulsed excitation. The lifetime distribution and, consequently the measured PL kinetics are shown to depend on the excitation pulse duration until it is not sufficiently short (pulsed limit) or long (cw limit). These two excitation limits, however, are proven to excite different distributions of lifetime components and cannot be directly compared. We derive and experimentally confirm the equality of lifetimes averaged over amplitude and intensity for cw and pulsed excitation, accordingly. The absorption cross section (ACS) of Si NCs in solid and liquid samples is assessed and compared by two approaches under cw-excitation based on the treatment of power-modulated PL kinetics or PL amplitude saturation curves under low and moderate excitation powers, respectively. The discrepancy in extracted ACS values as well as the long-debated phenomena of incomplete PL saturation of matrix-embedded Si NCs is explained by a proposed model that is based on saturation of various components in an ensemble distribution at different excitation powers. The model finally allows us to explain the mystery of average decay lifetime dependence on excitation power in the non-linear power regime. By varying the excitation from cw to pulsed, we showed the reduction of average decay lifetime in the later case and attribute this to the increased relative PL contribution of fast lifetime components that results in at least one order of magnitude lower ACS values. Finally, exciting the solid sample with very high excitation powers, we detected a PL intensity decrease region that allowed us to extract the Auger lifetime which is about 170 ns.

6.
Beilstein J Nanotechnol ; 8: 2315-2323, 2017.
Article in English | MEDLINE | ID: mdl-29181288

ABSTRACT

The absorption cross section (ACS) of silicon nanocrystals (Si NCs) in single-layer and multilayer structures with variable thickness of oxide barriers is determined via a photoluminescence (PL) modulation technique that is based on the analysis of excitation intensity-dependent PL kinetics under modulated pumping. We clearly demonstrate that roughly doubling the barrier thickness (from ca. 1 to 2.2 nm) induces a decrease of the ACS by a factor of 1.5. An optimum separation barrier thickness of ca. 1.6 nm is calculated to maximize the PL intensity yield. This large variation of ACS values with barrier thickness is attributed to a modulation of either defect population states or of the efficiency of energy transfer between confined NC layers. An exponential decrease of the ACS with decreasing temperature down to 120 K can be explained by smaller occupation number of phonons and expansion of the band gap of Si NCs at low temperatures. This study clearly shows that the ACS of Si NCs cannot be considered as independent on experimental conditions and sample parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...