Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Pers Med ; 14(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38248720

ABSTRACT

Surgical treatment of locally spread tumors in pelvic organs remains an urgent and complicated oncological problem. The recurrence rate after radical treatment ranges from 15.1% to 45.2%. The key to successful and safe surgical intervention lies in meticulous planning and intraoperative navigation, including the utilization of augmented reality (AR) technology. This paper presents the experience of clinically testing an AR technology application algorithm in the surgical treatment of 11 patients. The main stages of the algorithm are described. Radical operations incorporating intraoperative AR technology with favorable outcomes were performed on eight patients. One patient underwent a palliative intervention, while two patients did not undergo surgery. The testing of the algorithm for the application of AR technology in the surgical treatment of primary and recurrent pelvic tumors demonstrated both a technical possibility and reproducibility of this algorithm and the AR technology itself in clinical practice.

2.
J Imaging ; 8(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35877627

ABSTRACT

The technology of augmented and mixed reality (AR/MR) is useful in various areas of modern surgery. We considered the use of augmented and mixed reality technologies as a method of preoperative planning and intraoperative navigation in abdominal cancer patients. Practical use of AM/MR raises a range questions, which demand suitable solutions. The difficulties and obstacles we encountered in the practical use of AR/MR are presented, along with the ways we chose to overcome them. The most demonstrative case is covered in detail. The three-dimensional anatomical model obtained from the CT scan needed to be rigidly attached to the patient's body, and therefore an invasive approach was developed, using an orthopedic pin fixed to the pelvic bones. The pin is used both similarly to an X-ray contrast marker and as a marker for augmented reality. This solution made it possible, not only to visualize the anatomical structures of the patient and the border zone of the tumor, but also to change the position of the patient during the operation. In addition, a noninvasive (skin-based) marking method was developed that allows the application of mixed and augmented reality during operation. Both techniques were used (8 clinical cases) for preoperative planning and intraoperative navigation, which allowed surgeons to verify the radicality of the operation, to have visual control of all anatomical structures near the zone of interest, and to reduce the time of surgical intervention, thereby reducing the complication rate and improving the rehabilitation period.

SELECTION OF CITATIONS
SEARCH DETAIL