Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Somatosens Mot Res ; 36(2): 122-135, 2019 06.
Article in English | MEDLINE | ID: mdl-31181963

ABSTRACT

Background: Transcranial direct current stimulation (tDCS) has emerged as a promising therapeutic tool to improve balance and optimize rehabilitation strategies. However, current literature shows the methodological heterogeneity of tDCS protocols and results, hindering any clear conclusions about the effects of tDCS on postural control. Objective: Evaluate the effectiveness of tDCS on postural control, and identify the most beneficial target brain areas and the effect on different populations. Methods: Two independent reviewers selected randomized tDCS clinical-trials studies from PubMed, Scopus, Web of Science, and reference lists of retrieved articles published between 1998 and 2017. Most frequently reported centre of pressure (COP) variables were selected for meta-analysis. Other postural control outcomes were discussed in the review. Results: Thirty studies were included in the systematic review, and 11 were submitted to a meta-analysis. A reduction of COP displacement area has been significantly achieved by tDCS, evidencing an improvement in balance control. Individuals with cerebral palsy (CP) and healthy young adults are mostly affected by stimulation. The analysis of the impact of tDCS over different brain areas revealed a significant effect after primary motor cortex (M1) stimulation, however, with no clear results after cerebellar stimulation due to divergent results among studies. Conclusions: tDCS appears to improve balance control, more evident in healthy and CP subjects. Effects are observed when primary MI is stimulated. Cerebellar stimulation should be better investigated.


Subject(s)
Cerebral Palsy/therapy , Motor Cortex/physiology , Postural Balance/physiology , Transcranial Direct Current Stimulation/methods , Cerebral Palsy/physiopathology , Humans , Randomized Controlled Trials as Topic/methods , Transcranial Direct Current Stimulation/trends , Treatment Outcome
2.
Braz J Phys Ther ; 19(1): 44-51, 2015.
Article in English | MEDLINE | ID: mdl-25651134

ABSTRACT

BACKGROUND: Improved gait efficiency is one of the goals of therapy for children with cerebral palsy (CP). Postural insoles can allow more efficient gait by improving biomechanical alignment. OBJECTIVE: The aim of the present study was to determine the effect of the combination of postural insoles and ankle-foot orthoses on static and functional balance in children with CP. METHOD: A randomized, controlled, double-blind, clinical trial. After meeting legal requirements and the eligibility criteria, 20 children between four and 12 years of age were randomly allocated either to the control group (CG) (n=10) or the experimental group (EG) (n=10). The CG used placebo insoles and the EG used postural insoles. The Berg Balance Scale, Timed Up-and-Go Test, Six-Minute Walk Test, and Gross Motor Function Measure-88 were used to assess balance as well as the determination of oscillations from the center of pressure in the anteroposterior and mediolateral directions with eyes open and closed. Three evaluations were carried out: 1) immediately following placement of the insoles; 2) after three months of insole use; and 3) one month after suspending insole use. RESULTS: The EG achieved significantly better results in comparison to the CG on the Timed Up-and-Go Test as well as body sway in the anteroposterior and mediolateral directions. CONCLUSION: Postural insoles led to an improvement in static balance among children with cerebral palsy, as demonstrated by the reduction in body sway in the anteroposterior and mediolateral directions. Postural insole use also led to a better performance on the Timed Up-and-Go Test.


Subject(s)
Cerebral Palsy/physiopathology , Cerebral Palsy/rehabilitation , Foot Orthoses , Gait , Postural Balance , Child , Child, Preschool , Double-Blind Method , Female , Humans , Male , Prospective Studies
3.
Braz. j. phys. ther. (Impr.) ; 19(1): 44-51, Jan-Feb/2015. tab, graf
Article in English | LILACS | ID: lil-741371

ABSTRACT

BACKGROUND: Improved gait efficiency is one of the goals of therapy for children with cerebral palsy (CP). Postural insoles can allow more efficient gait by improving biomechanical alignment. OBJECTIVE: The aim of the present study was to determine the effect of the combination of postural insoles and ankle-foot orthoses on static and functional balance in children with CP. METHOD: A randomized, controlled, double-blind, clinical trial. After meeting legal requirements and the eligibility criteria, 20 children between four and 12 years of age were randomly allocated either to the control group (CG) (n=10) or the experimental group (EG) (n=10). The CG used placebo insoles and the EG used postural insoles. The Berg Balance Scale, Timed Up-and-Go Test, Six-Minute Walk Test, and Gross Motor Function Measure-88 were used to assess balance as well as the determination of oscillations from the center of pressure in the anteroposterior and mediolateral directions with eyes open and closed. Three evaluations were carried out: 1) immediately following placement of the insoles; 2) after three months of insole use; and 3) one month after suspending insole use. RESULTS: The EG achieved significantly better results in comparison to the CG on the Timed Up-and-Go Test as well as body sway in the anteroposterior and mediolateral directions. CONCLUSION: Postural insoles led to an improvement in static balance among children with cerebral palsy, as demonstrated by the reduction in body sway in the anteroposterior and mediolateral directions. Postural insole use also led to a better performance on the Timed Up-and-Go Test. .


Subject(s)
Humans , Male , Female , Child, Preschool , Child , Cerebral Palsy/physiopathology , Cerebral Palsy/rehabilitation , Postural Balance , Foot Orthoses , Gait , Double-Blind Method , Prospective Studies
4.
Braz J Phys Ther ; 18(5): 419-27, 2014.
Article in English | MEDLINE | ID: mdl-25372004

ABSTRACT

BACKGROUND: Transcranial direct-current stimulation (tDCS) has been widely studied with the aim of enhancing local synaptic efficacy and modulating the electrical activity of the cortex in patients with neurological disorders. OBJECTIVE: The purpose of the present study was to determine the effect of a single session of tDCS regarding immediate changes in spatiotemporal gait and oscillations of the center of pressure (30 seconds) in children with cerebral palsy (CP). METHOD: A randomized controlled trial with a blinded evaluator was conducted involving 20 children with CP between six and ten years of age. Gait and balance were evaluated three times: Evaluation 1 (before the stimulation), Evaluation 2 (immediately after stimulation), and Evaluation 3 (20 minutes after the stimulation). The protocol consisted of a 20-minute session of tDCS applied to the primary motor cortex at an intensity of 1 mA. The participants were randomly allocated to two groups: experimental group - anodal stimulation of the primary motor cortex; and control group - placebo transcranial stimulation. RESULTS: Significant reductions were found in the experimental group regarding oscillations during standing in the anteroposterior and mediolateral directions with eyes open and eyes closed in comparison with the control group (p<0.05). In the intra-group analysis, the experimental group exhibited significant improvements in gait velocity, cadence, and oscillation in the center of pressure during standing (p<0.05). No significant differences were found in the control group among the different evaluations. CONCLUSION: A single session of tDCS applied to the primary motor cortex promotes positive changes in static balance and gait velocity in children with cerebral palsy.


Subject(s)
Cerebral Palsy/physiopathology , Cerebral Palsy/therapy , Postural Balance , Transcranial Direct Current Stimulation , Child , Cross-Sectional Studies , Double-Blind Method , Humans , Physical Therapy Modalities
5.
Braz. j. phys. ther. (Impr.) ; 18(5): 419-427, 12/09/2014. tab, graf
Article in English | LILACS | ID: lil-727051

ABSTRACT

Background: Transcranial direct-current stimulation (tDCS) has been widely studied with the aim of enhancing local synaptic efficacy and modulating the electrical activity of the cortex in patients with neurological disorders. Objective: The purpose of the present study was to determine the effect of a single session of tDCS regarding immediate changes in spatiotemporal gait and oscillations of the center of pressure (30 seconds) in children with cerebral palsy (CP). Method: A randomized controlled trial with a blinded evaluator was conducted involving 20 children with CP between six and ten years of age. Gait and balance were evaluated three times: Evaluation 1 (before the stimulation), Evaluation 2 (immediately after stimulation), and Evaluation 3 (20 minutes after the stimulation). The protocol consisted of a 20-minute session of tDCS applied to the primary motor cortex at an intensity of 1 mA. The participants were randomly allocated to two groups: experimental group - anodal stimulation of the primary motor cortex; and control group - placebo transcranial stimulation. Results: Significant reductions were found in the experimental group regarding oscillations during standing in the anteroposterior and mediolateral directions with eyes open and eyes closed in comparison with the control group (p<0.05). In the intra-group analysis, the experimental group exhibited significant improvements in gait velocity, cadence, and oscillation in the center of pressure during standing (p<0.05). No significant differences were found in the control group among the different evaluations. Conclusion: A single session of tDCS applied to the primary motor cortex promotes positive changes in static balance and gait velocity in children with cerebral palsy. .


Subject(s)
Humans , Child , Cerebral Palsy/physiopathology , Cerebral Palsy/therapy , Postural Balance , Transcranial Direct Current Stimulation , Double-Blind Method , Cross-Sectional Studies , Physical Therapy Modalities
6.
Braz J Phys Ther ; 17(1): 17-23, 2013.
Article in English | MEDLINE | ID: mdl-23538455

ABSTRACT

BACKGROUND: Treadmill gait training as a therapeutic resource in the rehabilitation of children with cerebral palsy has recently been the focus of many studies; however, little is still known regarding its effect on static and functional balance in children. OBJECTIVE: The aim of the present study was to compare the effects of treadmill training and over ground gait training in children with cerebral palsy. METHOD: A randomized controlled trial with blinded evaluator was conducted with children with cerebral palsy between three and 12 years of age categorized in Levels I to III of the Gross Motor Function Classification System. Assessments were performed before and after the intervention and involved the Berg balance scale as well as the determination of oscillations from the center of pressure in the anteroposterior and mediolateral directions with eyes open and closed. The experimental group was submitted to treadmill training and the control group performed gait training over the ground. The intervention consisted of two 30-minute sessions per week for seven weeks. RESULTS: Both groups exhibited better functional balance after the protocol. The experimental group had higher Berg balance scale scores and exhibited lesser mediolateral oscillation with eyes open in comparison to the control group. CONCLUSIONS: Treadmill training had a greater effect on functional balance and mediolateral oscillation in comparison to over ground gait training in children with cerebral palsy. TRIAL REGISTRATION: RBR-5v3kg9.(Brazilian Registry of Clinical Trials).


Subject(s)
Cerebral Palsy/physiopathology , Cerebral Palsy/rehabilitation , Exercise Therapy , Gait , Postural Balance , Child , Female , Humans , Male , Single-Blind Method
7.
Braz. j. phys. ther. (Impr.) ; 17(1): 17-23, Jan.-Feb. 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-668785

ABSTRACT

BACKGROUND: Treadmill gait training as a therapeutic resource in the rehabilitation of children with cerebral palsy has recently been the focus of many studies; however, little is still known regarding its effect on static and functional balance in children. OBJECTIVE: The aim of the present study was to compare the effects of treadmill training and over ground gait training in children with cerebral palsy. METHOD: A randomized controlled trial with blinded evaluator was conducted with children with cerebral palsy between three and 12 years of age categorized in Levels I to III of the Gross Motor Function Classification System. Assessments were performed before and after the intervention and involved the Berg balance scale as well as the determination of oscillations from the center of pressure in the anteroposterior and mediolateral directions with eyes open and closed. The experimental group was submitted to treadmill training and the control group performed gait training over the ground. The intervention consisted of two 30-minute sessions per week for seven weeks. RESULTS: Both groups exhibited better functional balance after the protocol. The experimental group had higher Berg balance scale scores and exhibited lesser mediolateral oscillation with eyes open in comparison to the control group. CONCLUSIONS: Treadmill training had a greater effect on functional balance and mediolateral oscillation in comparison to over ground gait training in children with cerebral palsy. Trial registration: RBR-5v3kg9.(Brazilian Registry of Clinical Trials).


Subject(s)
Child , Female , Humans , Male , Cerebral Palsy/physiopathology , Cerebral Palsy/rehabilitation , Exercise Therapy , Gait , Postural Balance , Single-Blind Method
8.
BMC Pediatr ; 12: 53, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22591446

ABSTRACT

BACKGROUND: The use of botulinum toxin A (BT-A) for the treatment of lower limb spasticity is common in children with cerebral palsy (CP). Following the administration of BT-A, physical therapy plays a fundamental role in potentiating the functionality of the child. The balance deficit found in children with CP is mainly caused by muscle imbalance (spastic agonist and weak antagonist). Neuromuscular electrical stimulation (NMES) is a promising therapeutic modality for muscle strengthening in this population. The aim of the present study is to describe a protocol for a study aimed at analyzing the effects of NMES on dorsiflexors combined with physical therapy on static and functional balance in children with CP submitted to BT- A. METHODS/DESIGN: Protocol for a prospective, randomized, controlled trial with a blinded evaluator. Eligible participants will be children with cerebral palsy (Levels I, II and III of the Gross Motor Function Classification System) between five and 12 years of age, with independent gait with or without a gait-assistance device. All participants will receive BT-A in the lower limbs (triceps surae). The children will then be randomly allocated for either treatment with motor physical therapy combined with NMES on the tibialis anterior or motor physical therapy alone. The participants will be evaluated on three occasions: 1) one week prior to the administration of BT-A; 2) one week after the administration of BT-A; and 3) four months after the administration of BT-A (end of intervention). Spasticity will be assessed by the Modified Ashworth Scale and Modified Tardieu Scale. Static balance will be assessed using the Medicapteurs Fusyo pressure platform and functional balance will be assessed using the Berg Balance Scale. DISCUSSION: The aim of this protocol study is to describe the methodology of a randomized, controlled, clinical trial comparing the effect of motor physical therapy combined with NMES on the tibialis anterior muscle or motor physical therapy alone on static and functional balance in children with CP submitted to BT-A in the lower limbs. This study describes the background, hypotheses, methodology of the procedures and measurement of the results. TRIAL REGISTRATION: RBR5qzs8h.


Subject(s)
Botulinum Toxins, Type A/therapeutic use , Cerebral Palsy/therapy , Electric Stimulation Therapy , Neuromuscular Agents/therapeutic use , Postural Balance , Ankle , Cerebral Palsy/physiopathology , Child , Child, Preschool , Clinical Protocols , Combined Modality Therapy , Exercise Therapy , Humans , Muscle, Skeletal/physiology , Prospective Studies , Single-Blind Method , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...