Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38391930

ABSTRACT

(1) Background: We have previously shown that the use of an artificial supramolecular two-component system based on chimeric recombinant proteins 4D5scFv-barnase and barstar-heat shock protein 70 KDa (HSP70) allows targeted delivery of HSP70 to the surface of tumor cells bearing HER2/neu antigen. In this work, we studied the possibility to using DARPin9_29-barnase as the first targeting module recognizing HER2/neu-antigen in the HSP70 delivery system. (2) Methods: The effect of the developed systems for HSP70 delivery to human carcinomas SK-BR-3 and BT474 cells hyperexpressing HER2/neu on the activation of cytotoxic effectors of the immune cells was studied in vitro. (3) Results: The results obtained by confocal microscopy and cytofluorimetric analysis confirmed the binding of HSP70 or its fragment HSP70-16 on the surface of the treated cells. In response to the delivery of HSP70 to tumor cells, we observed an increase in the cytolytic activity of different cytotoxic effector immune cells from human peripheral blood. (4) Conclusions: Targeted modification of the tumor cell surface with molecular structures recognized by cytotoxic effectors of the immune system is among new promising approaches to antitumor immunotherapy.


Subject(s)
Antineoplastic Agents , Bacterial Proteins , Carcinoma , Ribonucleases , Humans , Recombinant Fusion Proteins/metabolism , HSP70 Heat-Shock Proteins
2.
J Immunother Cancer ; 10(6)2022 06.
Article in English | MEDLINE | ID: mdl-35764367

ABSTRACT

BACKGROUND: Both ganglioside GD2-targeted immunotherapy and antibody-drug conjugates (ADCs) have demonstrated clinical success as solid tumor therapies in recent years, yet no research has been carried out to develop anti-GD2 ADCs against solid tumors. This is the first study to analyze cytotoxic activity of clinically relevant anti-GD2 ADCs in a wide panel of cell lines with varying GD2 expression and their effects in mouse models of GD2-positive solid cancer. METHODS: Anti-GD2 ADCs were generated based on the GD2-specific antibody ch14.18 approved for the treatment of neuroblastoma and commonly used drugs monomethyl auristatin E (MMAE) or F (MMAF), conjugated via a cleavable linker by thiol-maleimide chemistry. The antibody was produced in a mammalian expression system, and its specific binding to GD2 was analyzed. Antigen-binding properties and biodistribution of the ADCs in mice were studied in comparison with the parent antibody. Cytotoxic effects of the ADCs were evaluated in a wide panel of GD2-positive and GD2-negative tumor cell lines of neuroblastoma, glioma, sarcoma, melanoma, and breast cancer. Their antitumor effects were studied in the B78-D14 melanoma and EL-4 lymphoma syngeneic mouse models. RESULTS: The ch14.18-MMAE and ch14.18-MMAF ADCs retained antigen-binding properties of the parent antibody. Direct dependence of the cytotoxic effect on the level of GD2 expression was observed in cell lines of different origin for both ADCs, with IC50 below 1 nM for the cells with high GD2 expression and no cytotoxic effect for GD2-negative cells. Within the analyzed cell lines, ch14.18-MMAF was more effective in the cells overexpressing GD2, while ch14.18-MMAE had more prominent activity in the cells expressing low GD2 levels. The ADCs had a similar biodistribution profile in the B78-D14 melanoma model compared with the parent antibody, reaching 7.7% ID/g in the tumor at 48 hours postinjection. The average tumor size in groups treated with ch14.18-MMAE or ch14.18-MMAF was 2.6 times and 3.8 times smaller, respectively, compared with the control group. Antitumor effects of the anti-GD2 ADCs were also confirmed in the EL-4 lymphoma model. CONCLUSION: These findings validate the potential of ADCs targeting ganglioside GD2 in treating multiple GD2-expressing solid tumors.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Melanoma , Neuroblastoma , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gangliosides , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Mammals , Mice , Tissue Distribution
3.
Biomolecules ; 12(4)2022 03 24.
Article in English | MEDLINE | ID: mdl-35454081

ABSTRACT

Parkinson disease (PD) is attributed to a proteostasis disorder mediated by α-synuclein accumulating in a specific brain region. PD manifestation is often related to extraneuronal alterations, some of which could be used as diagnostic or prognostic PD biomarkers. In this work, we studied the shifts in the expression of proteostasis-associated chaperones of the HSP70 family and autophagy-dependent p62 protein values in the peripheral blood mononuclear cells (PBMC) of mild to moderate PD patients. Although we did not detect any changes in the intracellular HSP70 protein pool in PD patients compared to non-PD controls, an increase in the transcriptional activity of the stress-associated HSPA1A/B and HSPA6 genes was observed in these cells. Basal p62 content was found to be increased in PD patients' PBMC, similarly to the p62 level in substantia nigra neural cells in PD. Moreover, the spontaneous apoptosis level was increased among PBMC and positively correlated with the p62 intracellular level in the PD group. A combined HSPA6- and p62-based analysis among 26 PD patients and 36 age-matched non-PD controls pointed out the diagnostic significance of these markers, with intermediate sensitivity and high specificity of this combination when observing patients diagnosed with PD.


Subject(s)
HSP70 Heat-Shock Proteins , Parkinson Disease , Autophagy/physiology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Proteostasis
4.
Int J Mol Sci ; 22(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34884936

ABSTRACT

Immunosenescence is a process of remodeling the immune system under the influence of chronic inflammation during aging. Parkinson's disease (PD) is a common age-associated neurodegenerative disorder and is frequently accompanied by neuroinflammation. On the other hand, cytomegalovirus (CMV), one of the most spread infections in humans, may induce chronic inflammation which contributes to immunosenescence, differentiation and the inflation of T cells and NK cells. Currently, there is no clear understanding of immunosenescence severity in PD patients infected with CMV. In this study, we analyzed differentiation stages and immunosenescence characteristics of T cells and NK cells in 31 patients with mild and moderate PD severity, 33 age-matched and 30 young healthy donors. The PD patients were 100% CMV-seropositive compared to 76% age-matched and 73% young CMV-infected healthy donors. The proportion of effector memory T cells re-expressing CD45RA, CD57+CD56- T cells and CD57+CD56+ T cells was significantly reduced in PD patients compared with CMV-seropositive age-matched healthy individuals. The CD57+CD56- T cell proportion in PD patients was similar to that of CMV-seropositive young healthy donors. Thus, PD is characterized by reduced peripheral blood T cell immunosenescence, even against the background of CMV infection.


Subject(s)
Cytomegalovirus Infections/blood , Lymphocyte Subsets/immunology , Parkinson Disease/immunology , Parkinson Disease/virology , Age Factors , Aged , CD56 Antigen/metabolism , CD57 Antigens/metabolism , Case-Control Studies , Cell Differentiation , Cytomegalovirus Infections/immunology , Female , Humans , Immunosenescence , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Leukocytes, Mononuclear/immunology , Lymphocyte Count , Lymphocyte Subsets/virology , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Parkinson Disease/blood
5.
Int J Mol Sci ; 22(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34948123

ABSTRACT

Nowadays, the use of genetically modified NK cells is a promising strategy for cancer immunotherapy. The additional insertion of genes capable of inducing cell suicide allows for the timely elimination of the modified NK cells. Different subsets of the heterogenic NK cell population may differ in proliferative potential, in susceptibility to genetic viral transduction, and to the subsequent induction of cell death. The CD57-NKG2C+ NK cells are of special interest as potential candidates for therapeutic usage due to their high proliferative potential and certain features of adaptive NK cells. In this study, CD57- NK cell subsets differing in KIR2DL2/3 and NKG2C expression were transduced with the iCasp9 suicide gene. The highest transduction efficacy was observed in the KIR2DL2/3+NKG2C+ NK cell subset, which demonstrated an increased proliferative potential with prolonged cultivation. The increased transduction efficiency of the cell cultures was associated with the higher expression level of the HLA-DR activation marker. Among the iCasp9-transduced subsets, KIR2DL2/3+ cells had the weakest response to the apoptosis induction by the chemical inductor of dimerization (CID). Thus, KIR2DL2/3+NKG2C+ NK cells showed an increased susceptibility to the iCasp9 retroviral transduction, which was associated with higher proliferative potential and activation status. However, the complete elimination of these cells with CID is impeded.


Subject(s)
CRISPR-Cas Systems , Cell Proliferation , Gene Expression Regulation , Genetic Vectors , Lymphocyte Activation , NK Cell Lectin-Like Receptor Subfamily C/biosynthesis , Receptors, KIR2DL2/biosynthesis , Receptors, KIR2DL3/biosynthesis , Retroviridae , Transduction, Genetic , Cell Death , Humans , K562 Cells , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily C/genetics , Receptors, KIR2DL2/genetics , Receptors, KIR2DL3/genetics
6.
J Leukoc Biol ; 109(2): 327-337, 2021 02.
Article in English | MEDLINE | ID: mdl-32421903

ABSTRACT

HLA-DR-expressing cells comprise an intriguing group of NK cells, which combine phenotypic characteristics of both NK cells and dendritic cells. These cells can be found in humans and mice; they are present in blood and tissues in healthy conditions and can expand in a spectrum of pathologies. HLA-DR+ NK cells are functionally active: they produce proinflammatory cytokines, degranulate, and easily proliferate in response to stimuli. Additionally, HLA-DR+ NK cells seem able to take in and then present certain antigens to CD4+ and CD8+ T cells, inducing their activation and proliferation, which puts them closer to professional antigen-presenting cells. It appears that these NK cells should be considerable players of the innate immune system, both due to their functional activity and regulation of the innate and adaptive immune responses. In this review, for the first time, we provide a detailed description and analysis of the available data characterizing phenotypic, developmental, and functional features of the HLA-DR+ NK cells in a healthy condition and a disease.


Subject(s)
Antigen Presentation/immunology , HLA-DR Antigens/metabolism , Killer Cells, Natural/immunology , Animals , Disease , Humans , Lymphocyte Activation/immunology
7.
Int J Mol Sci ; 20(2)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669565

ABSTRACT

A pattern of natural killer cell (NK cell) heterogeneity determines proliferative and functional responses to activating stimuli in individuals. Obtaining the progeny of a single cell by cloning the original population is one of the ways to study NK cell heterogeneity. In this work, we sorted single cells into a plate and stimulated them via interleukin (IL)-2 and gene-modified K562 feeder cells that expressed membrane-bound IL-21 (K562-mbIL21), which led to a generation of phenotypically confirmed and functionally active NK cell clones. Next, we applied two models of clone cultivation, which differently affected their phenotype, lifespan, and functional activity. The first model, which included weekly restimulation of clones with K562-mbIL21 and IL-2, resulted in the generation of relatively short-lived (5⁻7 weeks) clones of highly activated NK cells. Levels of human leukocyte antigen class II molecule-DR isotype (HLA-DR) expression in the expanded NK cells correlated strongly with interferon-γ (IFN-γ) production. The second model, in which NK cells were restimulated weekly with IL-2 alone and once on the sixth week with K562-mbIL21 and IL-2, produced long-lived clones (8⁻14 weeks) that expanded up to 107 cells with a lower ability to produce IFN-γ. Our method is applicable for studying variability in phenotype, proliferative, and functional activity of certain NK cell progeny in response to the stimulation, which may help in selecting NK cells best suited for clinical use.


Subject(s)
Cell Membrane/metabolism , Clone Cells , Interferon-gamma/biosynthesis , Interleukins/metabolism , K562 Cells/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Cell Survival/immunology , Cells, Cultured , Cytotoxicity, Immunologic , Feeder Cells , Humans , Interleukins/genetics , Lymphocyte Activation/immunology , Phenotype
8.
Oncotarget ; 5(23): 11800-12, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25514461

ABSTRACT

ROS production and intracellular HSP70 levels were measured in human neutrophils for three age groups: young (20-59 years), elders (60-89 years) and nonagenarians (90 years and older). Elders showed higher levels of spontaneous intracellular ROS content compared with young and nonagenarian groups, which had similar intracellular ROS levels. Zymosan-induced (non-spontaneous) extracellular ROS levels were also similar for young and nonagenarians but were lower in elders. However, spontaneous extracellular ROS production increased continuously with age. Correlation analysis revealed positive relationships between HSP70 levels and zymosan-stimulated ROS production in the elder group. This was consistent with a promoting role for HSP70 in ROS-associated neutrophils response to pathogens. No positive correlation between ROS production and intracellular HSP70 levels was found for groups of young people and nonagenarians. In contrast, significant negative correlations of some ROS and HSP70 characteriscics were found for neutrophils from young people and nonagenarians. The observed difference in ROS and HSP70 correlations in elders and nonagenarians might be associated with an increased risk of mortality in older individuals less than 90 years old.


Subject(s)
Aging/metabolism , HSP70 Heat-Shock Proteins/metabolism , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Adult , Aged , Aged, 80 and over , Female , Flow Cytometry , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...