Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Science ; 384(6695): 563-572, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696572

ABSTRACT

A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.


Subject(s)
Aging, Premature , Aging , Brain , Circadian Rhythm , Muscle, Skeletal , Animals , Male , Mice , Aging/genetics , Aging/physiology , Aging, Premature/genetics , Aging, Premature/prevention & control , Brain/physiology , Circadian Clocks/physiology , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Homeostasis , Muscle, Skeletal/physiology , Mice, Knockout , ARNTL Transcription Factors/genetics
2.
Cell Stem Cell ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38701785

ABSTRACT

In mammals, the circadian clock network drives daily rhythms of tissue-specific homeostasis. To dissect daily inter-tissue communication, we constructed a mouse minimal clock network comprising only two nodes: the peripheral epidermal clock and the central brain clock. By transcriptomic and functional characterization of this isolated connection, we identified a gatekeeping function of the peripheral tissue clock with respect to systemic inputs. The epidermal clock concurrently integrates and subverts brain signals to ensure timely execution of epidermal daily physiology. Timely cell-cycle termination in the epidermal stem cell compartment depends upon incorporation of clock-driven signals originating from the brain. In contrast, the epidermal clock corrects or outcompetes potentially disruptive feeding-related signals to ensure the optimal timing of DNA replication. Together, we present an approach for cataloging the systemic dependencies of daily temporal organization in a tissue and identify an essential gate-keeping function of peripheral circadian clocks that guarantees tissue homeostasis.

3.
Circulation ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38126199

ABSTRACT

BACKGROUND: Metabolic distress is often associated with heart failure with preserved ejection fraction (HFpEF) and represents a therapeutic challenge. Metabolism-induced systemic inflammation links comorbidities with HFpEF. How metabolic changes affect myocardial inflammation in the context of HFpEF is not known. METHODS: We found that ApoE knockout mice fed a Western diet recapitulate many features of HFpEF. Single-cell RNA sequencing was used for expression analysis of CD45+ cardiac cells to evaluate the involvement of inflammation in diastolic dysfunction. We focused bioinformatics analysis on macrophages, obtaining high-resolution identification of subsets of these cells in the heart, enabling us to study the outcomes of metabolic distress on the cardiac macrophage infiltrate and to identify a macrophage-to-cardiomyocyte regulatory axis. To test whether a clinically relevant sodium glucose cotransporter-2 inhibitor could ameliorate the cardiac immune infiltrate profile in our model, mice were randomized to receive the sodium glucose cotransporter-2 inhibitor dapagliflozin or vehicle for 8 weeks. RESULTS: ApoE knockout mice fed a Western diet presented with reduced diastolic function, reduced exercise tolerance, and increased pulmonary congestion associated with cardiac lipid overload and reduced polyunsaturated fatty acids. The main immune cell types infiltrating the heart included 4 subpopulations of resident and monocyte-derived macrophages, determining a proinflammatory profile exclusively in ApoE knockout- Western diet mice. Lipid overload had a direct effect on inflammatory gene activation in macrophages, mediated through endoplasmic reticulum stress pathways. Investigation of the macrophage-to-cardiomyocyte regulatory axis revealed the potential effects on cardiomyocytes of multiple inflammatory cytokines secreted by macrophages, affecting pathways such as hypertrophy, fibrosis, and autophagy. Finally, we describe an anti-inflammatory effect of sodium glucose cotransporter-2 inhibitor in this model. CONCLUSIONS: Using single-cell RNA sequencing , in a model of diastolic dysfunction driven by hyperlipidemia, we have determined the effects of metabolic distress on cardiac inflammatory cells, in particular on macrophages, and suggest sodium glucose cotransporter-2 inhibitors as potential therapeutic agents for the targeting of a specific phenotype of HFpEF.

4.
Mol Cell Proteomics ; 22(11): 100655, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37793502

ABSTRACT

Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Chromatography, Liquid , Circadian Clocks/genetics , Circadian Rhythm/genetics , Fibroblast Growth Factor 1/metabolism , Liver/metabolism , Muscles/metabolism , Proteome/metabolism , Tandem Mass Spectrometry
5.
Cell Rep ; 42(6): 112588, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37267101

ABSTRACT

Physiology is regulated by interconnected cell and tissue circadian clocks. Disruption of the rhythms generated by the concerted activity of these clocks is associated with metabolic disease. Here we tested the interactions between clocks in two critical components of organismal metabolism, liver and skeletal muscle, by rescuing clock function either in each organ separately or in both organs simultaneously in otherwise clock-less mice. Experiments showed that individual clocks are partially sufficient for tissue glucose metabolism, yet the connections between both tissue clocks coupled to daily feeding rhythms support systemic glucose tolerance. This synergy relies in part on local transcriptional control of the glucose machinery, feeding-responsive signals such as insulin, and metabolic cycles that connect the muscle and liver. We posit that spatiotemporal mechanisms of muscle and liver play an essential role in the maintenance of systemic glucose homeostasis and that disrupting this diurnal coordination can contribute to metabolic disease.


Subject(s)
Circadian Clocks , Mice , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Liver/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism
6.
Nat Cardiovasc Res ; 2: 144-158, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36949957

ABSTRACT

Somatic mutations in blood indicative of clonal hematopoiesis of indeterminate potential (CHIP) are associated with an increased risk of hematologic malignancy, coronary artery disease, and all-cause mortality. Here we analyze the relation between CHIP status and incident peripheral artery disease (PAD) and atherosclerosis, using whole-exome sequencing and clinical data from the UK Biobank and Mass General Brigham Biobank. CHIP associated with incident PAD and atherosclerotic disease across multiple beds, with increased risk among individuals with CHIP driven by mutation in DNA Damage Repair (DDR) genes such as TP53 and PPM1D. To model the effects of DDR-induced CHIP on atherosclerosis, we used a competitive bone marrow transplantation strategy, and generated atherosclerosis-prone Ldlr-/- chimeric mice carrying 20% p53-deficient hematopoietic cells. The chimeric mice were analyzed 13-weeks post-grafting and showed increased aortic plaque size and accumulation of macrophages within the plaque, driven by increased proliferation of p53-deficient plaque macrophages. In summary, our findings highlight the role of CHIP as a broad driver of atherosclerosis across the entire arterial system beyond the coronary arteries, and provide genetic and experimental support for a direct causal contribution of TP53-mutant CHIP to atherosclerosis.

7.
Sci Adv ; 8(26): eabo2896, 2022 07.
Article in English | MEDLINE | ID: mdl-35767612

ABSTRACT

Life on Earth anticipates recurring 24-hour environmental cycles via genetically encoded molecular clocks active in all mammalian organs. Communication between these clocks controls circadian homeostasis. Intertissue communication is mediated, in part, by temporal coordination of metabolism. Here, we characterize the extent to which clocks in different organs control systemic metabolic rhythms, an area that remains largely unexplored. We analyzed the metabolome of serum from mice with tissue-specific expression of the clock gene Bmal1. Having functional hepatic and muscle clocks can only drive a minority (13%) of systemic metabolic rhythms. Conversely, limiting Bmal1 expression to the central pacemaker in the brain restores rhythms to 57% of circulatory metabolites. Rhythmic feeding imposed on clockless mice resulted in a similar rescue, indicating that the central clock mainly regulates metabolic rhythms via behavior. These findings explicate the circadian communication between tissues and highlight the importance of the central clock in governing those signals.

8.
Sci Adv ; 7(39): eabi7828, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34550736

ABSTRACT

The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations. Here, we isolated the interaction between feeding and the liver clock by reconstituting Bmal1 exclusively in hepatocytes (Liver-RE), in otherwise clock-less mice, and controlling timing of food intake. We found that the cooperative action of BMAL1 and the transcription factor CEBPB regulates daily liver metabolic transcriptional programs. Functionally, the liver clock and feeding rhythm are sufficient to drive temporal carbohydrate homeostasis. By contrast, liver rhythms tied to redox and lipid metabolism required communication with the skeletal muscle clock, demonstrating peripheral clock cross-talk. Our results highlight how the inner workings of the clock system rely on communicating signals to maintain daily metabolism.

9.
Cell Rep ; 36(5): 109487, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34348140

ABSTRACT

Ketone bodies are bioactive metabolites that function as energy substrates, signaling molecules, and regulators of histone modifications. ß-hydroxybutyrate (ß-OHB) is utilized in lysine ß-hydroxybutyrylation (Kbhb) of histones, and associates with starvation-responsive genes, effectively coupling ketogenic metabolism with gene expression. The emerging diversity of the lysine acylation landscape prompted us to investigate the full proteomic impact of Kbhb. Global protein Kbhb is induced in a tissue-specific manner by a variety of interventions that evoke ß-OHB. Mass spectrometry analysis of the ß-hydroxybutyrylome in mouse liver revealed 891 sites of Kbhb within 267 proteins enriched for fatty acid, amino acid, detoxification, and one-carbon metabolic pathways. Kbhb inhibits S-adenosyl-L-homocysteine hydrolase (AHCY), a rate-limiting enzyme of the methionine cycle, in parallel with altered metabolite levels. Our results illuminate the role of Kbhb in hepatic metabolism under ketogenic conditions and demonstrate a functional consequence of this modification on a central metabolic enzyme.


Subject(s)
3-Hydroxybutyric Acid/metabolism , Ketone Bodies/metabolism , Liver/metabolism , Lysine/metabolism , Proteomics , Adenosylhomocysteinase/chemistry , Adenosylhomocysteinase/metabolism , Amino Acid Sequence , Animals , Cell Line , Humans , Male , Mice, Inbred C57BL , Models, Molecular , NAD/metabolism
10.
Diabetes ; 69(11): 2324-2339, 2020 11.
Article in English | MEDLINE | ID: mdl-32778569

ABSTRACT

Reduced activation of energy metabolism increases adiposity in humans and other mammals. Thus, exploring dietary and molecular mechanisms able to improve energy metabolism is of paramount medical importance because such mechanisms can be leveraged as a therapy for obesity and related disorders. Here, we show that a designer protein-deprived diet enriched in free essential amino acids can 1) promote the brown fat thermogenic program and fatty acid oxidation, 2) stimulate uncoupling protein 1 (UCP1)-independent respiration in subcutaneous white fat, 3) change the gut microbiota composition, and 4) prevent and reverse obesity and dysregulated glucose homeostasis in multiple mouse models, prolonging the healthy life span. These effects are independent of unbalanced amino acid ratio, energy consumption, and intestinal calorie absorption. A brown fat-specific activation of the mechanistic target of rapamycin complex 1 seems involved in the diet-induced beneficial effects, as also strengthened by in vitro experiments. Hence, our results suggest that brown and white fat may be targets of specific amino acids to control UCP1-dependent and -independent thermogenesis, thereby contributing to the improvement of metabolic health.


Subject(s)
Amino Acids/administration & dosage , Dietary Proteins/administration & dosage , Energy Metabolism/physiology , Homeostasis , Obesity/diet therapy , Adipokines/metabolism , Animal Feed/analysis , Animals , Body Composition , Diet , Dietary Proteins/analysis , Energy Metabolism/drug effects , Glucose/metabolism , Longevity , Mice , Mice, Inbred C57BL
11.
Nat Commun ; 8: 14680, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262700

ABSTRACT

Heart failure (HF) is a leading cause of mortality. Inflammation is implicated in HF, yet clinical trials targeting pro-inflammatory cytokines in HF were unsuccessful, possibly due to redundant functions of individual cytokines. Searching for better cardiac inflammation targets, here we link T cells with HF development in a mouse model of pathological cardiac hypertrophy and in human HF patients. T cell costimulation blockade, through FDA-approved rheumatoid arthritis drug abatacept, leads to highly significant delay in progression and decreased severity of cardiac dysfunction in the mouse HF model. The therapeutic effect occurs via inhibition of activation and cardiac infiltration of T cells and macrophages, leading to reduced cardiomyocyte death. Abatacept treatment also induces production of anti-inflammatory cytokine interleukin-10 (IL-10). IL-10-deficient mice are refractive to treatment, while protection could be rescued by transfer of IL-10-sufficient B cells. These results suggest that T cell costimulation blockade might be therapeutically exploited to treat HF.


Subject(s)
Cardiomegaly/metabolism , Heart Failure/metabolism , Macrophages/metabolism , T-Lymphocytes/metabolism , Abatacept/pharmacology , Animals , Animals, Newborn , Cardiomegaly/genetics , Cardiomegaly/prevention & control , Cells, Cultured , Heart Failure/genetics , Heart Failure/prevention & control , Humans , Immunosuppressive Agents/pharmacology , Interleukin-10/genetics , Interleukin-10/metabolism , Macrophages/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Pressure , T-Lymphocytes/drug effects
12.
Nat Commun ; 7: 12418, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27489048

ABSTRACT

Methylation at 5-cytosine (5-mC) is a fundamental epigenetic DNA modification associated recently with cardiac disease. In contrast, the role of 5-hydroxymethylcytosine (5-hmC)-5-mC's oxidation product-in cardiac biology and disease is unknown. Here we assess the hydroxymethylome in embryonic, neonatal, adult and hypertrophic mouse cardiomyocytes, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks during heart development and failure. DNA hydroxymethylation marks the body of highly expressed genes as well as distal regulatory regions with enhanced activity. Moreover, pathological hypertrophy is characterized by a shift towards a neonatal 5-hmC distribution pattern. We also show that the ten-eleven translocation 2 (TET2) enzyme regulates the expression of key cardiac genes, such as Myh7, through 5-hmC deposition on the gene body and at enhancers. Thus, we provide a genome-wide analysis of 5-hmC in the cardiomyocyte and suggest a role for this epigenetic modification in heart development and disease.


Subject(s)
5-Methylcytosine/analogs & derivatives , Cardiomegaly/genetics , DNA Methylation , Gene Expression Regulation, Developmental , Myocytes, Cardiac/metabolism , 5-Methylcytosine/metabolism , Animals , Cell Differentiation/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Enhancer Elements, Genetic/genetics , Gene Knockdown Techniques , Genome , Mice, Inbred C57BL , Proto-Oncogene Proteins/metabolism , Repetitive Sequences, Nucleic Acid/genetics , Transcription, Genetic
13.
Nat Rev Cardiol ; 12(8): 488-97, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25962978

ABSTRACT

The regulatory networks governing gene expression in cardiomyocytes are under intense investigation, not least because dysregulation of the gene programme has a fundamental role in the development of a failing myocardium. Epigenetic modifications and functional non-protein-coding RNAs (ncRNAs) are important contributors to this process. The epigenetic modifications that regulate transcription comprise post-translational changes to histones-the proteins around which DNA is wound-as well as modifications to cytosine residues on DNA. The most studied of the histone changes are acetylation and methylation. Histone acetylation is known to be important in cardiac physiology and pathophysiology, but the roles of other histone modifications and of cytosine methylation are only starting to be investigated. Understanding of the role of microRNAs has also seen major advancements, but the function of long ncRNAs is less well defined. Moreover, the connection between ncRNAs and epigenetic modifications is poorly understood in the heart. In this Review, we summarize new insights into how these two layers of gene-expression regulation might be involved in the pathogenesis of cardiac hypertrophy and failure, and how we are only beginning to appreciate the complexity of the interactive network of which they are part.


Subject(s)
Cardiomegaly/genetics , Epigenesis, Genetic , Heart Failure/genetics , RNA, Untranslated , Acetylation , Cardiotonic Agents/therapeutic use , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , DNA , DNA Methylation/genetics , Heart Failure/drug therapy , Histones/metabolism , Humans , Methylation , MicroRNAs
14.
Cardiovasc Res ; 95(3): 366-74, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22721990

ABSTRACT

AIMS: The discovery of a specific prorenin receptor (PRR) suggests a biological function of prorenin that is independent of angiotensin I production. In the present study, we investigated the role of PRR on smooth muscle cell (SMC) migration. METHODS AND RESULTS: PRR was expressed in human mammary arteries and in cultured human aortic SMCs. Prorenin induced SMC migration in a dose-dependent manner, as assessed by Boyden chamber chemotaxis assay, and increased SMC random motility, as determined by video microscopy. The prorenin decoy peptide inhibited SMC migration in response to prorenin, and knockdown of PRR by small interfering RNA completely inhibited the migratory response to prorenin, demonstrating that the chemotactic action of prorenin is mediated by the PRR. Prorenin induced cytoskeleton reorganization and lamellipodia formation and increased the intracellular levels of both RhoA-GTP and Rac1-GTP through PRR. These effects were required for SMC migration, because the suppression by small interfering RNA of either Rac1 or RhoA GTP-bound forms completely blocked the PRR-mediated chemotactic effect. Prorenin also induced the formation of larger focal adhesions and cleavage of the focal adhesion kinase (pp125(FAK)) into two main fragments with molecular weights of 50 and 90 kDa. The generation of these two fragments of pp125(FAK) was reduced by the calpain inhibitor ALLN, which also inhibited SMC migration in response to prorenin. CONCLUSIONS: These results demonstrate that prorenin is a chemotactic factor for human aortic SMCs expressing PRR. This effect is elicited through reorganization of the cytoskeleton and focal adhesion, activation of RhoA and Rac1, and calpain-mediated cleavage of pp125(FAK).


Subject(s)
Chemotaxis , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Protein Precursors/metabolism , Receptors, Cell Surface/metabolism , Renin/metabolism , Aorta/metabolism , Calpain/antagonists & inhibitors , Calpain/metabolism , Cells, Cultured , Chemotaxis/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Cytoskeleton/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesions/metabolism , Humans , Microscopy, Video , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Peptide Fragments/metabolism , RNA Interference , Receptors, Cell Surface/genetics , Signal Transduction , Time Factors , Transfection , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Prorenin Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...