Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Equine Vet Sci ; 105: 103731, 2021 10.
Article in English | MEDLINE | ID: mdl-34607684

ABSTRACT

For a period of 20 days, 12 horses either received a prebiotic supplementation with fructooligosaccharides and inulin via Jerusalem artichoke meal (JAM) or corncob meal without grains (CMG) as placebo. The horses were euthanized 1 hour postprandial, gastric digesta was sampled from pars nonglandularis (PNG) and pars glandularis (PG), and concentrations of starch, mono- and disaccharides, fructans, d- and l-lactic acid, and short chain fatty acids were analyzed. Concentrations of starch and simple sugars were widely the same in JAM supplemented and not supplemented meals. However, fructans were less than half as much without supplementation as with supplementation of JAM. Glucose, fructose, sucrose, and fructans disappeared to a larger extent with prebiotic supplementation than without (106.6% vs. 86.7% glucose, 73.1% vs. 66.8% fructose, 91.5% vs. 14.7% sucrose, and 68.3% vs. 35.4% fructans remained in PNG; 81.9% vs. 38.3% glucose, 52.2% vs. 53.4% fructose, 47.1% vs. 0% sucrose, and 48.5% vs. 31.7% fructans remained in PG with CMG vs. JAM feeding). Disappearance of simple sugars and fructans was primarily associated with appearance of n-butyric acid (r = -0.21 - r = -0.33).


Subject(s)
Helianthus , Inulin , Animals , Disaccharides , Fructans , Horses , Monosaccharides , Oligosaccharides , Prebiotics , Stomach
2.
Anim Nutr ; 6(3): 342-352, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005768

ABSTRACT

Legume grains such as field peas and field beans can be produced on a local level, and may be reliable sources of dietary protein and energy apart from common soybean and rapeseed meals. In ruminants, protein, starch, and carbohydrates from peas and field beans are fermented in large part before reaching the small intestine. The objective of this study was to evaluate the effects of a combination of ensiling and hydro-thermic treatment (i.e., toasting at 160 °C for 30 min) of grains of peas and field beans on the concentrations of post-ruminal crude protein (PRCP) and rumen-undegraded protein (RUP). Moreover, 24-h gas production and methane production were measured. For this, an in vitro batch culture system with ruminal fluid from sheep was used. Rumen-undegraded protein was determined using the Streptomyces griseus protease test. Scanning electron micrographs were used to visualize morphological changes of starch granules and their joint matrices in peas and field beans after ensiling, toasting, or a combination of both. Native pea grains contained crude protein (CP) at 199 g/kg DM, PRCP at 155 g/kg DM at a ruminal passage rate of 0.08/h (Kp8), RUP at 33 g/kg DM at Kp8, and starch at 530 g/kg DM. Native field beans contained CP at 296 g/kg DM, PRCP at 212 g/kg DM at Kp8, RUP at 54 g of/kg DM at Kp8, and starch at 450 g/kg DM. The PRCP did not considerably differ among native and treated peas or field beans. Especially in the peas, RUP at Kp8 increased after ensiling by 10 g/kg DM (i.e., 30%; P < 0.05). Toasting increased RUP (Kp8) in ensiled peas by another 28% (P < 0.05). Toasting had no effect on PRCP or RUP when the peas or field beans were not ensiled before. Gas and methane production were not affected by any treatment, and scanning electron micrographs did not reveal structural changes on the starches doubtless of any treatment. Protein seemed to be more affected by treatment with ensiled + toasted peas than with ensiled + toasted field beans, but starches and other carbohydrates from both legumes remained unaffected.

3.
J Equine Vet Sci ; 90: 103020, 2020 07.
Article in English | MEDLINE | ID: mdl-32534784

ABSTRACT

Fructooligosaccharides (FOS) and inulin may modulate hindgut fermentation. It was tested if digesta batch cultures taken from horses adapted to FOS and inulin show different fermentation compared with such taken from nonsupplemented horses. Six horses received 0.15 g FOS and inulin/kg body weight/d via Jerusalem artichoke meal (JAM) upon a hay-based diet; six horses received corncob meal without grains (CMG) as placebo. The horses were euthanized after 20 days. Digesta samples were taken from stomach, cecum, ventral colon ascendens (VCA), and colon transversum (CT). Digesta batch cultures were incubated 48 hours to measure in vitro gas production as well as pre- and post-incubation pH and oxidation-reduction potential (ORP). A distinct fermentation of the surplus of fructans present in the inoculum was found with JAM-adapted batch cultures. Gas production was accelerated in inoculated gastric contents of horses adapted to JAM compared with CMG adapted ones (7.8 vs. 16.4 hours to achieve half of the 48 hours gas quantity, respectively; P > .05). Although buffered, pH decreased during fermentation. Postincubation pH was lower with JAM than CMG-adapted batch cultures (P > .05). Preinoculation ORP was lower with stomach batch cultures adapted to CMG than with such adapted to JAM. The ORP increased twofold from pre- to post-incubation with the latter. Asymptotic maximal gas production decreased gradually using cecum, VCA, or CT digesta. Parts of FOS and inulin of digesta are fermented in the stomach, which reduce possible effects on hindgut fermentation. Elevated fermentation may considerably impact stomach health.


Subject(s)
Helianthus , Inulin , Animals , Batch Cell Culture Techniques/veterinary , Horses , Oligosaccharides , Prebiotics , Stomach
4.
Animals (Basel) ; 9(7)2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31266144

ABSTRACT

Pea grains may partially replace soybean or rapeseed meals and cereals in ruminant diets, but substitution by unprocessed peas is limited by high ruminal protein solubility. The effect of combined ensiling and toasting of peas using a mobile toaster (100 kg/h throughput rate, 180 to 190 °C supplied air temperature) on rumen-undegraded protein (RUP) was tested in vitro using the Streptomyces griseus protease test. The effects of ensiling plus toasting on apparent digestibility of organic matter (OM), gross energy (GE), and proximate nutrients were examined in a digestion trial. Concentrations of metabolizable energy (ME) and net energy lactation (NEL) were calculated. Native peas had 38 g RUP/kg dry matter (DM), which was 20% of crude protein (CP). Rumen-undegraded protein increased three-fold after ensiling plus toasting (p < 0.001). Acid detergent insoluble protein increased five-fold. Apparent digestibility was 0.94 (OM), 0.90 (CP), and above 0.99 (nitrogen-free extract, starch, and sugars) and was not altered by the treatment. The ME (13.9 MJ/kg DM) or the NEL (8.9 MJ/kg DM) concentration was similar in native and ensiled plus toasted peas. This technique can easily be applied on farms and may increase RUP. However, it needs to be clarified under which conditions pea protein will be damaged.

SELECTION OF CITATIONS
SEARCH DETAIL
...