Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Diabetologia ; 67(5): 940-951, 2024 May.
Article in English | MEDLINE | ID: mdl-38366195

ABSTRACT

AIMS/HYPOTHESIS: The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS: A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS: Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION: Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.


Subject(s)
Congenital Hyperinsulinism , Diabetes, Gestational , Potassium Channels, Inwardly Rectifying , Infant, Newborn , Adult , Middle Aged , Female , Pregnancy , Humans , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism , Congenital Hyperinsulinism/genetics , Sulfonylurea Compounds/therapeutic use , Mutation/genetics , Glyburide , Adenosine Triphosphate/metabolism
2.
Diabetes Care ; 47(3): 393-400, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38151474

ABSTRACT

OBJECTIVE: This multicenter prospective cohort study compared pancreas volume as assessed by MRI, metabolic scores derived from oral glucose tolerance testing (OGTT), and a combination of pancreas volume and metabolic scores for predicting progression to stage 3 type 1 diabetes (T1D) in individuals with multiple diabetes-related autoantibodies. RESEARCH DESIGN AND METHODS: Pancreas MRI was performed in 65 multiple autoantibody-positive participants enrolled in the Type 1 Diabetes TrialNet Pathway to Prevention study. Prediction of progression to stage 3 T1D was assessed using pancreas volume index (PVI), OGTT-derived Index60 score and Diabetes Prevention Trial-Type 1 Risk Score (DPTRS), and a combination of PVI and DPTRS. RESULTS: PVI, Index60, and DPTRS were all significantly different at study entry in 11 individuals who subsequently experienced progression to stage 3 T1D compared with 54 participants who did not experience progression (P < 0.005). PVI did not correlate with metabolic testing across individual study participants. PVI declined longitudinally in the 11 individuals diagnosed with stage 3 T1D, whereas Index60 and DPTRS increased. The area under the receiver operating characteristic curve for predicting progression to stage 3 from measurements at study entry was 0.76 for PVI, 0.79 for Index60, 0.79 for DPTRS, and 0.91 for PVI plus DPTRS. CONCLUSIONS: These findings suggest that measures of pancreas volume and metabolism reflect distinct components of risk for developing stage 3 type 1 diabetes and that a combination of these measures may provide superior prediction than either alone.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/diagnosis , Prospective Studies , Pancreas/diagnostic imaging , Pancreas/metabolism , Risk Factors , Autoantibodies , Magnetic Resonance Imaging
3.
Diabetes Care ; 46(4): 773-776, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36724370

ABSTRACT

OBJECTIVE: To determine the mechanism of reduced pancreas size in type 1 diabetes and the significance of islet-derived insulin in pancreatic growth. RESEARCH DESIGN AND METHODS: Using a validated and standardized MRI protocol, we measured pancreas volume and shape in a family with an autosomal-dominant insulin gene mutation that results in insulin deficiency similar in severity to that of type 1 diabetes but without autoimmunity. DNA sequencing confirmed the mutation in all four affected individuals and none of the four control family members. Insulin secretory capacity was determined by measuring postprandial urinary C-peptide. RESULTS: Family members with this form of monogenic diabetes had a markedly smaller pancreas and a severely impaired postprandial C-peptide level than family members without diabetes. CONCLUSIONS: These results suggest that severe insulin deficiency, rather than islet-directed autoimmunity, leads to reduced pancreas size in type 1 diabetes and that insulin is a major trophic factor for the exocrine pancreas.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin , Pancreas , Diabetes Mellitus, Type 1/diagnostic imaging , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Organ Size , Insulin/deficiency , Insulin/genetics , Pancreas/diagnostic imaging , Pancreas/pathology , Pedigree , Magnetic Resonance Imaging , Heterozygote , Humans , Male , Female , Adult , Middle Aged , Mutation
4.
J Endocr Soc ; 7(3): bvac182, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36655002

ABSTRACT

Given the close anatomical and physiological links between the exocrine and endocrine pancreas, diseases of 1 compartment often affect the other through mechanisms that remain poorly understood. Pancreatitis has been associated with both type 1 and type 2 diabetes, but its association with monogenic diabetes is unknown. Patients heterozygous for pathogenic CFTR variants are cystic fibrosis carriers and have been reported to have an increased risk of acute pancreatitis. We describe a 12-year-old patient with monogenic neonatal diabetes due to a pathogenic heterozygous paternally inherited mutation of the insulin gene (INS), c.94 G > A (p.Gly32Ser), who experienced 3 recurrent episodes of acute pancreatitis over 7 months in conjunction with poor glycemic control, despite extensive efforts to improve glycemic control in the past 4 years. Intriguingly, the maternal side of the family has an extensive history of adult-onset pancreatitis consistent with autosomal dominant inheritance and the proband is heterozygous for a maternally inherited, CFTR variant c.3909C > G (p.Asn1303Lys). Paternally inherited monogenic neonatal diabetes may have promoted earlier age-of-onset of pancreatitis in this pediatric patient compared to maternal relatives with adult-onset acute pancreatitis. Further study is needed to clarify how separate pathophysiologies associated with INS and CFTR mutations influence interactions between the endocrine and exocrine pancreas.

6.
J Endocr Soc ; 6(4): bvac015, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35237736

ABSTRACT

Kabuki syndrome (KS) is a multisystem disorder estimated to occur in 1:32 000 newborns. Pathogenic mutations cause the majority but not all cases of KS in either KMT2D or KDM6A. KS can be suspected by phenotypic features, including infantile hypotonia, developmental delay, dysmorphic features, congenital heart defects, and others. Still, many of these features are not readily apparent in a newborn. Although neonatal hypoglycemia has been reported in 8% to 10% of patients with KS, the incidence and severity of hyperinsulinemic hypoglycemia (HH) is not well-studied. We present a full-term female infant with HH who was responsive to low-dose diazoxide. At 3 months of age, she was admitted for septic shock, worsening respiratory status, and severe pulmonary hypertension, requiring extracorporeal membrane oxygenation support. Her neonatal history was notable for hypotonia, dysphagia with aspiration requiring gastrostomy tube placement, and a cardiac defect-hypoplastic aortic arch requiring aortic arch repair. She has characteristic facial features, including prominent eyelashes, long palpebral fissures, and a short nasal columella. Next-generation sequencing for HH revealed a de novo likely pathogenic missense variant in KDM6A gene: c.3479G > T, p.Gly1160Val that was absent from population databases. Genetic testing for causes of HH should include testing of the KS genes KMT2D and KDM6A. Early detection of the underlying genetic defect will help guide management as all reported HH cases associated with KS have been responsive to diazoxide. Affected infants with underlying cardiac conditions may be at higher risk of serious respiratory complications such as pulmonary hypertension.

7.
Curr Opin Endocrinol Diabetes Obes ; 29(1): 65-77, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34864759

ABSTRACT

PURPOSE OF REVIEW: Neonatal diabetes mellitus (NDM) is a rare disorder in which 80-85% of infants diagnosed under 6 months of age will be found to have an underlying monogenic cause. This review will summarize what is known about growth and neurodevelopmental difficulties among individuals with various forms of NDM. RECENT FINDINGS: Patients with NDM often have intrauterine growth restriction and/or low birth weight because of insulin deficiency in utero and the severity and likelihood of ongoing growth concerns after birth depends on the specific cause. A growing list of rare recessive causes of NDM are associated with neurodevelopmental and/or growth problems that can either be related to direct gene effects on brain development, or may be related to a variety of co-morbidities. The most common form of NDM results in spectrum of neurological disability due to expression of mutated KATP channels throughout the brain. SUMMARY: Monogenic causes of neonatal diabetes are characterized by variable degree of restriction of growth in utero because of deficiency of insulin that depends on the specific gene cause. Many forms also include a spectrum of neurodevelopmental disability because of mutation-related effects on brain development. Longer term study is needed to clarify longitudinal effects on growth into adulthood.


Subject(s)
Diabetes Mellitus , Adult , Diabetes Mellitus/genetics , Growth and Development , Humans , Infant , Infant, Newborn , Insulin , Mutation
8.
Sci Rep ; 11(1): 21590, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732776

ABSTRACT

The gene KCNJ11 encodes Kir6.2 a major subunit of the ATP-sensitive potassium channel (KATP) expressed in both the pancreas and brain. Heterozygous gain of function mutations in KCNJ11 can cause neonatal diabetes mellitus (NDM). In addition, many patients exhibit neurological defects ranging from modest learning disorders to severe cognitive dysfunction and seizures. However, it remains unclear to what extent these neurological deficits are due to direct brain-specific activity of mutant KATP. We have generated cerebral organoids derived from human induced pluripotent stem cells (hiPSCs) possessing the KCNJ11 mutation p.Val59Met (V59M) and from non-pathogenic/normal hiPSCs (i.e., control/WT). Control cerebral organoids developed neural networks that could generate stable synchronized bursting neuronal activity whereas those derived from V59M cerebral organoids showed reduced synchronization. Histocytochemical studies revealed a marked reduction in neurons localized to upper cortical layer-like structures in V59M cerebral organoids suggesting dysfunction in the development of cortical neuronal network. Examination of temporal transcriptional profiles of neural stem cell markers revealed an extended window of SOX2 expression in V59M cerebral organoids. Continuous treatment of V59M cerebral organoids with the KATP blocker tolbutamide partially rescued the neurodevelopmental differences. Our study demonstrates the utility of human cerebral organoids as an investigative platform for studying the effects of KCNJ11 mutations on neurophysiological outcome.


Subject(s)
Brain/metabolism , Organoids/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Adult , Brain/physiopathology , Cell Culture Techniques , Diabetes Mellitus/metabolism , Electrophysiology , Female , Fibroblasts/metabolism , Humans , In Vitro Techniques , Induced Pluripotent Stem Cells/cytology , Infant, Newborn , Infant, Newborn, Diseases/genetics , Leukocytes, Mononuclear/cytology , Microscopy, Confocal , Nerve Net , Neural Pathways , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/metabolism
9.
PLoS One ; 16(8): e0256029, 2021.
Article in English | MEDLINE | ID: mdl-34428220

ABSTRACT

Magnetic resonance imaging (MRI) has detected changes in pancreas volume and other characteristics in type 1 and type 2 diabetes. However, differences in MRI technology and approaches across locations currently limit the incorporation of pancreas imaging into multisite trials. The purpose of this study was to develop a standardized MRI protocol for pancreas imaging and to define the reproducibility of these measurements. Calibrated phantoms with known MRI properties were imaged at five sites with differing MRI hardware and software to develop a harmonized MRI imaging protocol. Subsequently, five healthy volunteers underwent MRI at four sites using the harmonized protocol to assess pancreas size, shape, apparent diffusion coefficient (ADC), longitudinal relaxation time (T1), magnetization transfer ratio (MTR), and pancreas and hepatic fat fraction. Following harmonization, pancreas size, surface area to volume ratio, diffusion, and longitudinal relaxation time were reproducible, with coefficients of variation less than 10%. In contrast, non-standardized image processing led to greater variation in MRI measurements. By using a standardized MRI image acquisition and processing protocol, quantitative MRI of the pancreas performed at multiple locations can be incorporated into clinical trials comparing pancreas imaging measures and metabolic state in individuals with type 1 or type 2 diabetes.


Subject(s)
Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Pancreas/diagnostic imaging , Adult , Diffusion Magnetic Resonance Imaging/methods , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Male , Phantoms, Imaging , Prospective Studies , Reproducibility of Results
10.
Pediatr Ann ; 50(7): e304-e307, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34264792

ABSTRACT

A growing number of people with diabetes are turning to self-built systems to dose and deliver insulin. These do-it-yourself artificial pancreas systems (DIY-APS) use commercially available insulin pumps and continuous glucose monitors and add an algorithm that independently modulates insulin dosing. Frustrated by the pace of diabetes technology development, a group of patients and diabetes advocates developed this technology without formal safety studies and without approval by the US Food and Drug Administration (FDA). Loop, OpenAPS, and AndroidAPS are the three available platforms, and patients worldwide are choosing them over other options. Patients generally report positive outcomes, but in May 2019, the FDA publicly warned against the use of such systems. Endocrinology providers are, therefore, faced with a difficult decision of whether to support patients interested in using a DIY-APS. This article describes the current state of DIY-APS, regulatory considerations, and our recommendations for endocrinology providers regarding this technology. [Pediatr Ann. 2021;50(7):e304-e307.].


Subject(s)
Diabetes Mellitus, Type 1 , Insulin Infusion Systems , Pancreas, Artificial , Self-Management/methods , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Humans , Insulin/therapeutic use , United States , United States Food and Drug Administration
11.
Diabetes Res Clin Pract ; 175: 108798, 2021 May.
Article in English | MEDLINE | ID: mdl-33845048

ABSTRACT

We report a 6-month-old boy with antibody-positive insulin-dependent diabetes mellitus. Sequencing identified compound heterozygous deletions of exon 5 and exons 36-37 in LRBA. At three years, he has yet to exhibit any other immune symptoms. Genetic testing of LRBA is warranted in patients with neonatal diabetes, even without immune dysregulation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , DNA Copy Number Variations/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Infant, Newborn , Male , Mutation
12.
Article in English | MEDLINE | ID: mdl-36330312

ABSTRACT

Monogenic diabetes is a category of diabetes mellitus caused by a single gene mutation or chromosomal abnormality, usually sub-classified as either neonatal diabetes or maturity-onset diabetes of the young (MODY). Although monogenic diabetes affects up to 3.5% of all patients with diabetes diagnosed before age 30, misdiagnosis and/or improper treatment occurs frequently. The University of Chicago Monogenic Diabetes Registry, established in 2008, offers insight into the diagnosis, treatment, and natural history of individuals known or suspected to have monogenic diabetes. Those interested in participating in the Registry begin by completing a secure web-based registration form found on our website (http://monogenicdiabetes.uchicago.edu/registry/). Participants are then screened for eligibility and consented either by phone, video call, or in person. Relevant medical and family history is collected at baseline and then annually via surveys through our secure Research Electronic Data Capture (REDCap) database. The University of Chicago Monogenic Diabetes Registry has enrolled over 3800 participants from over 2000 families. Participants represent all 50 states and more than 20 different countries. To date, over 1100 participants have a known genetic cause of diabetes. While many Registry participants reported being referred through their diabetes care provider (54%), a large portion also learned about the Registry through web searching (24%), friends/family (18%), or other sources (13%). Around two-thirds of those with a known genetic cause had research-based genetic testing completed rather than clinical testing due to insurance coverage difficulties. Of those who were found to have monogenic diabetes, significant delays in diagnosis were identified, which highlights the need for increased access to clinical genetic testing covered by insurance companies specifically within the United States. Among genes that cause a MODY phenotype, GCK mutations were the most common (59%) followed by HNF1A mutations (28%), while mutations in KCNJ11 were the most common among genes that cause neonatal diabetes (35%) followed by INS (16%). Over the last decade, improvements in data collection for the University of Chicago Monogenic Diabetes Registry have resulted in increased knowledge of the natural history of monogenic diabetes, as well as a better understanding of the most effective treatments. The University of Chicago Monogenic Diabetes Registry serves as a valuable resource that will continue to provide evidence to support improved clinical care and patient outcomes in monogenic diabetes.

13.
Diabetes Care ; 44(1): 35-42, 2021 01.
Article in English | MEDLINE | ID: mdl-33184150

ABSTRACT

OBJECTIVE: ABCC8 mutations cause neonatal diabetes mellitus that can be transient (TNDM) or, less commonly, permanent (PNDM); ∼90% of individuals can be treated with oral sulfonylureas instead of insulin. Previous studies suggested that people with ABCC8-PNDM require lower sulfonylurea doses and have milder neurological features than those with KCNJ11-PNDM. However, these studies were short-term and included combinations of ABCC8-PNDM and ABCC8-TNDM. We aimed to assess the long-term glycemic and neurological outcomes in sulfonylurea-treated ABCC8-PNDM. RESEARCH DESIGN AND METHODS: We studied all 24 individuals with ABCC8-PNDM diagnosed in the U.K., Italy, France, and U.S. known to transfer from insulin to sulfonylureas before May 2010. Data on glycemic control, sulfonylurea dose, adverse effects including hypoglycemia, and neurological features were analyzed using nonparametric statistical methods. RESULTS: Long-term data were obtained for 21 of 24 individuals (median follow-up 10.0 [range 4.1-13.2] years). Eighteen of 21 remained on sulfonylureas without insulin at the most recent follow-up. Glycemic control improved on sulfonylureas (presulfonylurea vs. 1-year posttransfer HbA1c 7.2% vs. 5.7%, P = 0.0004) and remained excellent long-term (1-year vs. 10-year HbA1c 5.7% vs. 6.5%, P = 0.04), n = 16. Relatively high doses were used (1-year vs. 10-year dose 0.37 vs. 0.25 mg/kg/day glyburide, P = 0.50) without any severe hypoglycemia. Neurological features were reported in 13 of 21 individuals; these improved following sulfonylurea transfer in 7 of 13. The most common features were learning difficulties (52%), developmental delay (48%), and attention deficit hyperactivity disorder (38%). CONCLUSIONS: Sulfonylurea treatment of ABCC8-PNDM results in excellent long-term glycemic control. Overt neurological features frequently occur and may improve with sulfonylureas, supporting early, rapid genetic testing to guide appropriate treatment and neurodevelopmental assessment.


Subject(s)
Diabetes Mellitus , Potassium Channels, Inwardly Rectifying , Diabetes Mellitus/drug therapy , Follow-Up Studies , Humans , Hypoglycemic Agents/therapeutic use , Infant, Newborn , Mutation , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics
14.
J Diabetes Sci Technol ; 14(5): 860-867, 2020 09.
Article in English | MEDLINE | ID: mdl-32680447

ABSTRACT

BACKGROUND: A growing number of people with diabetes are choosing to adopt do-it-yourself artificial pancreas system (DIYAPS) despite a lack of approval from the US Food and Drug Administration.We describe patients' experiences using DIYAPS, and patient and diabetes providers' perspectives on the use of such technology. METHODS: We distributed surveys to patients and diabetes providers to assess each group's perspectives on the use of DIYAPS. The patient survey also assessed glycemic control and impact on sleep. The patient survey was distributed in February 2019 via Facebook and Twitter (n = 101). The provider survey was distributed via the American Association of Diabetes Educators' e-mail newsletter in April 2019 and the Pediatric Endocrine Society membership e-mail list in May 2019 (n = 152). RESULTS: Patients overwhelmingly described improvements in glycemic control and sleep quality: 94% reported improvement in time in range, and 64% reported improvement in all five areas assessed. Eighty-nine percent of patients described DIYAPS as "Safe" or "Very Safe," compared to only 27% of providers. Most felt encouraged by their diabetes provider to continue using DIYAPS, but few described providers as knowledgeable regarding its use. Providers cited a lack of experience with such systems and an inability to troubleshoot them as their most significant challenges. CONCLUSIONS: Despite evidence that DIYAPS usage is increasing, our surveys suggest that patients' adoption of this technology and trust in it is outpacing that of diabetes providers. Providers must be aware of this growing population of patients and familiarize themselves with DIYAPS to support patients using this technology.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Type 1/drug therapy , Glycemic Control , Hypoglycemic Agents/administration & dosage , Insulin Infusion Systems , Insulin/administration & dosage , Pancreas, Artificial , Patient Participation , Adolescent , Adult , Attitude of Health Personnel , Attitude to Computers , Biomarkers/blood , Blood Glucose/metabolism , Blood Glucose Self-Monitoring , Child , Computer Literacy , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/diagnosis , Diffusion of Innovation , Female , Glycemic Control/adverse effects , Health Care Surveys , Health Knowledge, Attitudes, Practice , Humans , Hypoglycemic Agents/adverse effects , Insulin/adverse effects , Insulin Infusion Systems/adverse effects , Male , Middle Aged , Monitoring, Ambulatory , Pancreas, Artificial/adverse effects , Patient Satisfaction , Predictive Value of Tests , Treatment Outcome , Young Adult
15.
Cell Stem Cell ; 27(1): 137-146.e6, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32442395

ABSTRACT

GATA6 is a critical regulator of pancreatic development, with heterozygous mutations in this transcription factor being the most common cause of pancreatic agenesis. To study the variability in disease phenotype among individuals harboring these mutations, a patient-induced pluripotent stem cell model was used. Interestingly, GATA6 protein expression remained depressed in pancreatic progenitor cells even after correction of the coding mutation. Screening the regulatory regions of the GATA6 gene in these patient cells and 32 additional agenesis patients revealed a higher minor allele frequency of a SNP 3' of the GATA6 coding sequence. Introduction of this minor allele SNP by genome editing confirmed its functionality in depressing GATA6 expression and the efficiency of pancreas differentiation. This work highlights a possible genetic modifier contributing to pancreatic agenesis and demonstrates the usefulness of using patient-induced pluripotent stem cells for targeted discovery and validation of non-coding gene variants affecting gene expression and disease penetrance.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation/genetics , GATA6 Transcription Factor/genetics , Humans , Organogenesis , Pancreas
16.
Hum Mutat ; 41(5): 884-905, 2020 05.
Article in English | MEDLINE | ID: mdl-32027066

ABSTRACT

The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the ß-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.


Subject(s)
Congenital Hyperinsulinism/genetics , Diabetes Mellitus/genetics , Insulin-Secreting Cells/metabolism , Mutation , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics , Congenital Hyperinsulinism/diagnosis , Diabetes Mellitus/diagnosis , Gain of Function Mutation , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant, Newborn , Loss of Function Mutation
17.
Diabetes Care ; 43(12): 3117-3128, 2020 12.
Article in English | MEDLINE | ID: mdl-33560999

ABSTRACT

Individualization of therapy based on a person's specific type of diabetes is one key element of a "precision medicine" approach to diabetes care. However, applying such an approach remains difficult because of barriers such as disease heterogeneity, difficulties in accurately diagnosing different types of diabetes, multiple genetic influences, incomplete understanding of pathophysiology, limitations of current therapies, and environmental, social, and psychological factors. Monogenic diabetes, for which single gene mutations are causal, is the category most suited to a precision approach. The pathophysiological mechanisms of monogenic diabetes are understood better than those of any other form of diabetes. Thus, this category offers the advantage of accurate diagnosis of nonoverlapping etiological subgroups for which specific interventions can be applied. Although representing a small proportion of all diabetes cases, monogenic forms present an opportunity to demonstrate the feasibility of precision medicine strategies. In June 2019, the editors of Diabetes Care convened a panel of experts to discuss this opportunity. This article summarizes the major themes that arose at that forum. It presents an overview of the common causes of monogenic diabetes, describes some challenges in identifying and treating these disorders, and reports experience with various approaches to screening, diagnosis, and management. This article complements a larger American Diabetes Association effort supporting implementation of precision medicine for monogenic diabetes, which could serve as a platform for a broader initiative to apply more precise tactics to treating the more common forms of diabetes.


Subject(s)
Diabetes Mellitus/genetics , Diabetes Mellitus/therapy , Precision Medicine , Congresses as Topic , Endocrinology/methods , Endocrinology/organization & administration , Endocrinology/trends , Expert Testimony , Humans , Patient-Centered Care/methods , Patient-Centered Care/trends , Precision Medicine/methods , Precision Medicine/trends
18.
Curr Diab Rep ; 19(8): 52, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31250216

ABSTRACT

PURPOSE OF REVIEW: The goal of this review is to provide updates on the safety and efficacy of long-term sulfonylurea use in patients with KCNJ11-related diabetes. Publications from 2004 to the present were reviewed with an emphasis on literature since 2014. RECENT FINDINGS: Sulfonylureas, often taken at high doses, have now been utilized effectively in KCNJ11 patients for over 10 years. Mild-moderate hypoglycemia can occur, but in two studies with a combined 975 patient-years on sulfonylureas, no severe hypoglycemic events were reported. Improvements in neurodevelopment and motor function after transition to sulfonylureas continue to be described. Sulfonylureas continue to be an effective, sustainable, and safe treatment for KCNJ11-related diabetes. Ongoing follow-up of patients in research registries will allow for deeper understanding of the facilitators and barriers to long-term sustainability. Further understanding of the effect of sulfonylurea on long-term neurodevelopmental outcomes, and the potential for adjunctive therapies, is needed.


Subject(s)
Diabetes Mellitus , Potassium Channels, Inwardly Rectifying/genetics , Precision Medicine , Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics , Humans , Hypoglycemic Agents , Infant, Newborn , Mutation , Sulfonylurea Compounds , Time Factors
19.
Diabetes Res Clin Pract ; 151: 231-236, 2019 May.
Article in English | MEDLINE | ID: mdl-31063852

ABSTRACT

We report on 134 unique GCK variants in 217 families, including 27 unpublished variants, identified in the US Monogenic Diabetes Registry in the last decade. Using ACMG guidelines, 26% were pathogenic, 56% likely pathogenic and 18% were of uncertain significance. Those with pathogenic variants had clinical features consistent with GCK-MODY.


Subject(s)
Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Glucokinase/genetics , Adolescent , Adult , Child , Diabetes Mellitus, Type 2/pathology , Female , Humans , Male , Registries , United States , Young Adult
20.
Diabetes ; 68(8): 1565-1576, 2019 08.
Article in English | MEDLINE | ID: mdl-31092478

ABSTRACT

Although insulin resistance consistently occurs with type 1 diabetes, its predominant driver is uncertain. We therefore determined the relative contributions of hyperglycemia and iatrogenic hyperinsulinemia to insulin resistance using hyperinsulinemic-euglycemic clamps in three participant groups (n = 10/group) with differing insulinemia and glycemia: healthy control subjects (euinsulinemia and euglycemia), glucokinase-maturity-onset diabetes of the young (GCK-MODY; euinsulinemia and hyperglycemia), and type 1 diabetes (hyperinsulinemia and hyperglycemia matching GCK-MODY). We assessed the contribution of hyperglycemia by comparing insulin sensitivity in control and GCK-MODY and the contribution of hyperinsulinemia by comparing GCK-MODY and type 1 diabetes. Hemoglobin A1c was normal in control subjects and similarly elevated for type 1 diabetes and GCK-MODY. Basal insulin levels in control subjects and GCK-MODY were nearly equal but were 2.5-fold higher in type 1 diabetes. Low-dose insulin infusion suppressed endogenous glucose production similarly in all groups and suppressed nonesterified fatty acids similarly between control subjects and GCK-MODY, but to a lesser extent for type 1 diabetes. High-dose insulin infusion stimulated glucose disposal similarly in control subjects and GCK-MODY but was 29% and 22% less effective in type 1 diabetes, respectively. Multivariable linear regression showed that insulinemia-but not glycemia-was significantly associated with muscle insulin sensitivity. These data suggest that iatrogenic hyperinsulinemia predominates in driving insulin resistance in type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Hyperglycemia/physiopathology , Hyperinsulinism/physiopathology , Insulin Resistance/physiology , Adolescent , Adult , Female , Humans , Hyperglycemia/blood , Hyperinsulinism/blood , Male , Middle Aged , Models, Theoretical , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...