Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(42): 15477-15485, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37812809

ABSTRACT

The binding affinity of monoclonal antibodies (mAbs) for their intended therapeutic targets is often affected by chemical and post-translational modifications in the antigen binding (Fab) domains. A new two-dimensional analytical approach is described here utilizing native size exclusion chromatography (SEC) to separate populations of antibodies and bound antibody-antigen complexes for subsequent characterization of these modifications by reversed-phase (RP) liquid chromatography-mass spectrometry (LC-MS) at the intact antibody level. Previously, we utilized peptide mapping to measure modifications impacting binding. However, in this study, the large size of the modification (N-glycosylation) allowed assessing its impact from small amounts (∼20 ug) of intact antibody, without the need for peptide mapping. Here, we apply the native SEC-based competitive binding assay to quickly and qualitatively investigate the effects of Fab glycosylation of four antispike protein mAbs that were developed for use in the treatment of COVID-19 disease. Three of the mAbs were observed to have consensus N-glycosylation sites (N-X-T/S) in the Fab domains, a relatively rare occurrence in therapeutic mAbs. The goal of the study was to characterize the levels of Fab glycosylation present, as well as determine the impact of glycosylation on binding to the spike protein receptor binding domain (RBD) and the ability of the mAbs to inhibit RBD-ACE2 interaction at the intact antibody level, with minimal sample treatment and preparation. The three mAbs with Fab N-glycans were found to have glycosylation profiles ranging from full occupancy at each Fab (in one mAb) to partially glycosylated with mixed populations of two, one, or no glycan moieties. Competitive SEC analysis of mAb-RBD revealed that the glycosylated antibody populations outcompete their nonglycosylated counterparts for the available RBD molecules. This competitive SEC binding analysis was applied to investigate the three-body interaction of a glycosylated mAb blocking the interaction between endogenous binding partners RBD-ACE2, finding that both glycosylated and nonglycosylated mAb populations bound to RBD with high enough affinity to block RBD-ACE2 binding.


Subject(s)
COVID-19 , Humans , Glycosylation , Chromatography, Liquid , Angiotensin-Converting Enzyme 2/metabolism , Tandem Mass Spectrometry , Antibodies, Viral , Protein Binding , Chromatography, Gel
2.
Sci Transl Med ; 14(646): eabn1252, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35412328

ABSTRACT

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to arise and prolong the coronavirus disease 2019 (COVID-19) pandemic. Here, we used a cell-free expression workflow to rapidly screen and optimize constructs containing multiple computationally designed miniprotein inhibitors of SARS-CoV-2. We found the broadest efficacy was achieved with a homotrimeric version of the 75-residue angiotensin-converting enzyme 2 (ACE2) mimic AHB2 (TRI2-2) designed to geometrically match the trimeric spike architecture. Consistent with the design model, in the cryo-electron microscopy structure TRI2-2 forms a tripod at the apex of the spike protein that engaged all three receptor binding domains simultaneously. TRI2-2 neutralized Omicron (B.1.1.529), Delta (B.1.617.2), and all other variants tested with greater potency than the monoclonal antibodies used clinically for the treatment of COVID-19. TRI2-2 also conferred prophylactic and therapeutic protection against SARS-CoV-2 challenge when administered intranasally in mice. Designed miniprotein receptor mimics geometrically arrayed to match pathogen receptor binding sites could be a widely applicable antiviral therapeutic strategy with advantages over antibodies in greater resistance to viral escape and antigenic drift, and advantages over native receptor traps in lower chances of autoimmune responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Humans , Mice , Spike Glycoprotein, Coronavirus
3.
bioRxiv ; 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34268509

ABSTRACT

Escape variants of SARS-CoV-2 are threatening to prolong the COVID-19 pandemic. To address this challenge, we developed multivalent protein-based minibinders as potential prophylactic and therapeutic agents. Homotrimers of single minibinders and fusions of three distinct minibinders were designed to geometrically match the SARS-CoV-2 spike (S) trimer architecture and were optimized by cell-free expression and found to exhibit virtually no measurable dissociation upon binding. Cryo-electron microscopy (cryoEM) showed that these trivalent minibinders engage all three receptor binding domains on a single S trimer. The top candidates neutralize SARS-CoV-2 variants of concern with IC 50 values in the low pM range, resist viral escape, and provide protection in highly vulnerable human ACE2-expressing transgenic mice, both prophylactically and therapeutically. Our integrated workflow promises to accelerate the design of mutationally resilient therapeutics for pandemic preparedness. ONE-SENTENCE SUMMARY: We designed, developed, and characterized potent, trivalent miniprotein binders that provide prophylactic and therapeutic protection against emerging SARS-CoV-2 variants of concern.

SELECTION OF CITATIONS
SEARCH DETAIL
...