Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(16): e2107900, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35238078

ABSTRACT

A data mining approach to discover and develop new organic nonlinear optical crystals that produce intense pulses of terahertz radiation is demonstrated. The Cambridge Structural Database is mined for non-centrosymmetric materials and these structural data are used in tandem with density functional theory calculations to predict new materials that efficiently generate terahertz radiation. This enables us to (in a relatively short time) discover, synthesize, and grow large, high-quality crystals of four promising materials and characterize them for intense terahertz generation. In a direct comparison to the current state-of-the-art organic terahertz generation crystals, these new materials excel. The discovery and characterization of these novel terahertz generators validate the approach of combining data mining with density functional theory calculations to predict properties of high-performance organic materials, potentially for a host of exciting applications.

2.
Opt Lett ; 45(7): 2054-2057, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236066

ABSTRACT

One of the most effective ways of generating terahertz (THz) radiation involves the conversion of short-pulsed IR or visible laser light into THz pulses at significantly lower frequencies. This conversion can be accomplished using organic crystals with nonlinear optical crystal (NLO) properties for IR to THz conversion through optical rectification. Due to the high refractive indices of organic crystals, pump laser light as well as generated THz radiation is lost from reflections at crystal surfaces. Here we report a structure composed of a layered series of materials with intermediate refractive indices designed to reduce reflective losses and improve the THz generation from organic crystals. This structure increases the transmission coefficients for both infrared pump input and THz output. We combine simple theoretical calculations with experimental data to show that a structure composed of materials with intermediate refractive indices can be used to increase generated THz intensity by nearly 50%.

SELECTION OF CITATIONS
SEARCH DETAIL
...