Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Educ Curric Dev ; 11: 23821205241227328, 2024.
Article in English | MEDLINE | ID: mdl-38304279

ABSTRACT

Physicians must adapt their learning and expertise to the rapid evolution of healthcare. To train for the innovation-efficient demands of adaptive expertise, medical students need to acquire the skill of adaptive self-regulated learning, which includes accessing, interpreting, and synthesizing emerging basic and translational research to support patient care. In response, we developed the course Medical Student Grand Rounds (MSGR). It engages all pre-clerkship students at our institution with self-regulated learning from translational basic research literature. In this report, we describe MSGR's methodology and important outcomes. Students found, interpreted, critically assessed, and presented basic research literature about self-selected clinically relevant topics. In less than one semester and mentored by basic science researchers, they completed eight milestones: (a) search research literature databases; (b) choose a clinical topic using searching skills; (c) outline the topic's background; (d) outline a presentation based on the topic's mechanistic research literature; (e) attend translational research-oriented grand rounds by faculty; (f) learn to prepare oral presentations; (g) write an abstract; and (h) present at Grand Rounds Day, emphasizing their topic's research literature. Graded milestones and end-of-course self-assessments indicated students became proficient in interpreting research articles, preparing and delivering presentations, understanding links among basic and translational research and clinical applications, and pursuing self-regulated learning. Qualitative analysis of self-assessment surveys found most students thought they progressed toward the learning objectives: find scientific information about a research topic (56% positive responses), interpret and critically assess scientific information (64%), and prepare and deliver a scientific presentation (50%). Milestones improve time management and provide a scaffolded method for presenting focused research topics. MSGR equips students with critical thinking skills for lifelong, adaptive, self-regulated learning-a foundation for adaptive expertise. The master adaptive learner cycle of planning, learning, assessing, and adjusting is a conceptual framework for understanding students' MSGR learning experiences.

2.
Acad Med ; 97(5): 684-688, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34789666

ABSTRACT

PROBLEM: Understanding and communicating medical advances driven by basic research, and acquiring foundational skills in critically appraising and communicating translational basic research literature that affects patient care, are challenging for medical students to develop. APPROACH: The authors developed a mandatory course from 2012 to 2018 at Texas A&M University College of Medicine to address this problem. Medical Student Grand Rounds (MSGR) trains first-year students to find, critically assess, and present primary research literature about self-selected medically relevant topics. With basic science faculty mentoring, students completed milestones culminating in oral presentations. Students learned to search literature databases and then choose a clinical subject using these skills. They outlined the clinical subject area background and a mechanistic research topic into a clinical problem based on deeper evaluation of primary research literature. "Mechanistic" was defined in this context as providing experimental evidence that explained the "how" and "why" underlying clinical manifestations of a disease. Students received evaluations and feedback from mentors about discerning the quality of information and synthesizing information on their topics. Finally, students prepared and gave oral presentations, emphasizing the primary literature on their topics. OUTCOMES: In the early stages of the course development, students had difficulty critically assessing and evaluating research literature. Mentored training by research-oriented faculty, however, dramatically improved student perceptions of the MSGR experience. Mentoring helped students develop skills to synthesize ideas from basic research literature. According to grades and self-evaluations, students increased proficiency in finding and interpreting research articles, preparing and delivering presentations, and understanding links among basic and translational research and clinical applications. NEXT STEPS: The authors plan to survey fourth-year students who have completed MSGR about their perceptions of the course in the context of clinical experiences in medical school to guide future refinements.


Subject(s)
Education, Medical, Undergraduate , Students, Medical , Humans , Mentors , Schools, Medical , Translational Research, Biomedical
4.
J Exp Med ; 200(11): 1383-93, 2004 Dec 06.
Article in English | MEDLINE | ID: mdl-15583012

ABSTRACT

Rapid clearance of pathogens is essential for successful control of pyogenic bacterial infection. Previous experiments have shown that antibody to specific intracellular adhesion molecule-grabbing nonintegrin (SIGN)-R1 inhibits uptake of capsular polysaccharide by marginal zone macrophages, suggesting a role for SIGN-R1 in this process. We now demonstrate that mice lacking SIGN-R1 (a mouse homologue of human dendritic cell-SIGN receptor) are significantly more susceptible to Streptococcus pneumoniae infection and fail to clear S. pneumoniae from the circulation. Marginal zone and peritoneal macrophages show impaired bacterial recognition associated with an inability to bind T-independent type 2 antigens such as dextran. Our work represents the first evidence for a protective in vivo role for a SIGN family molecule.


Subject(s)
Antigens, CD/physiology , Lectins, C-Type/physiology , Pneumococcal Infections/immunology , Animals , Antibodies, Bacterial/blood , Antigens, CD/genetics , Cell Adhesion Molecules , Cloning, Molecular , Dextrans/metabolism , Female , Immunity, Innate , Lectins, C-Type/genetics , Macrophages/immunology , Macrophages/metabolism , Male , Mice , NIH 3T3 Cells , Receptors, Cell Surface , Streptococcus pneumoniae/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...