Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 167(4): 909-17, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22639359

ABSTRACT

Amending soil with organic matter is common in agricultural and logging practices. Such amendments have benefits to soil fertility and crop yields. These benefits may be increased if material is preprocessed before introduction into soil. We analyzed the efficiency of microaerobic fermentation (MF), also referred to as Bokashi, in preprocessing fibrous lignocellulosic (FLC) organic materials using varying produce amendments and leachate treatments. Adding produce amendments increased leachate production and fermentation rates and decreased the biological oxygen demand of the leachate. Continuously draining leachate without returning it to the fermentors led to acidification and decreased concentrations of polysaccharides (PS) in leachates. PS fragmentation and the production of soluble metabolites and gases stabilized in fermentors in about 2-4 weeks. About 2 % of the carbon content was lost as CO(2). PS degradation rates, upon introduction of processed materials into soil, were similar to unfermented FLC. Our results indicate that MF is insufficient for adequate preprocessing of FLC material.


Subject(s)
Fermentation , Lignin/chemistry , Lignin/metabolism , Aerobiosis , Hydrogen-Ion Concentration , Hydrolysis , Oxygen/metabolism , Soil
2.
J Econ Entomol ; 105(2): 374-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22606806

ABSTRACT

A large number of biodegradable byproducts including alcohols, soluble saccharides, volatile organic acids, and amines accumulate in the liquid fraction (leachate) produced as vegetal and food scrap waste decomposes. Untreated leachate, because it is rich in nutrients and organic byproducts, has a high chemical oxygen demand and is normally cleared of soluble organic byproducts by mineralization before its discharge into waterways. Mineralizing leachates using chemical and microbial biotechnologies is, however, a lengthy and costly process. We report here that the larvae of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae), an insect rich in protein and lipids, and having significant commercial value, while feeding and growing off of compost leachate, lowers its chemical oxygen demand relative to that of leachate unexposed to larvae, neutralizes its acidity, and clears it of volatile organic acids, amines, and alcohols. These observations demonstrate that black soldier fly larvae could be used to help offset the cost and clean up of organic solutes in leachate waste streams while recycling carbon, nitrogen, and phosphate into usable and commercially valuable biomass.


Subject(s)
Diptera/metabolism , Environmental Pollutants/metabolism , Animals , Biological Oxygen Demand Analysis , Diptera/growth & development , Environmental Pollutants/analysis , Feeding Behavior , Larva/growth & development , Larva/metabolism
3.
Appl Biochem Biotechnol ; 166(6): 1381-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22238016

ABSTRACT

Black soldier fly (BSF) larvae (Hermetia illucens), feeding on leachate from decaying vegetable and food scrap waste, increase ammonia (NH (4) (+) ) concentration five- to sixfold relative to leachate unprocessed by larvae. NH (4) (+) in larva-processed leachate reached levels as high as ∼100 mM. Most of this NH (4) (+) appears to have come from organic nitrogen within the frass produced by the larvae as they fed on leachate. In nitrate-enriched solutions, BSF larvae also facilitate dissimilatory nitrate reduction to ammonia. The markedly higher concentration of NH (4) (+) recovered in leachates processed with BSF larvae and concomitant diversion of nutrients into insect biomass (itself a valuable feedstock) indicate that the use of BSF larvae in processing leachate of decaying organic waste could be advantageous in offsetting capital and environmental costs incurred in composting.


Subject(s)
Ammonia/metabolism , Diptera/physiology , Larva/metabolism , Animals , Biodegradation, Environmental , Denitrification , Diptera/metabolism , Feeding Behavior/physiology , Hydrogen-Ion Concentration , Larva/physiology , Nitrates/metabolism , Nitrogen/metabolism , Vegetables/metabolism , Waste Management/methods , Water/metabolism
4.
Appl Biochem Biotechnol ; 165(1): 270-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21537893

ABSTRACT

We propose that microaerobic composting (MC) can be used to decompose vegetal matter with a short turnover time and large carbon (C) recycling potential. We used a novel method for measuring the degree of fragmentation of water-insoluble acid-soluble (WIAS) polysaccharides as a proxy in tracking their relative degree of degradation (i.e., fragmentation endpoint index). Oak leaves and food scrap processed by MC reached a fragmentation end point within 2 weeks. After amending the MC products into soil, the half-life of the polysaccharide residues was ~6-7 times longer (~100-110 days) than that measured during MC. The main products given up during MC were volatile organic acids (VOAs), alcohols and soluble carbohydrates in the compost tea, and CO(2). These products accounted for about 2% of the initial carbon in the feedstock. Very small amounts of VOAs, particularly butyric acid, were formed in the amended soil. Based on a residence time of materials in fermentors of 2 weeks, a ~100-m(3) capacity MC facility could process 2,000-4,000 metric tons of vegetable matter amended in ten hectares of arable land per year.


Subject(s)
Carbon/metabolism , Soil/chemistry , Carbohydrates , Polysaccharides/metabolism , Soil Microbiology
5.
Appl Biochem Biotechnol ; 163(4): 519-27, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20830583

ABSTRACT

We describe a simple method for tracking the course of microbial degradation of polysaccharide-rich feedstocks. The method involves determining total polysaccharides present in the feedstock, measured in glucose equivalents, relative to the fractional component of polysaccharides exhibiting 2,3-dinitrosalycylic acid aldehyde activity. The ratio of total polysaccharide to aldehyde activity, defined as the end-point fragmentation (EPF) index, is then calculated and tracked as it shifts as microbial degradation of polysaccharide-rich feedstock progresses. While degradation occurs, the EPF index falls. It bottoms out at an asymptotic limit marking the point in time where further degradation of the polysaccharide-rich feedstock has ceased. The EPF index can be used to follow the progressive breakdown of composting polysaccharide-rich waste. It may also have applicability as a means of tracking the turnover of polysaccharides in other complex environments including soil, sediments, wetlands, and peat bogs.


Subject(s)
Aldehydes/metabolism , Microbiology , Polysaccharides/metabolism , Aldehydes/chemistry , Fermentation , Polysaccharides/chemistry , Soil Microbiology , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...