Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 284(23): 15951-69, 2009 Jun 05.
Article in English | MEDLINE | ID: mdl-19351880

ABSTRACT

Damage of presynaptic mitochondria could result in release of proapoptotic factors that threaten the integrity of the entire neuron. We discovered that alpha-synuclein (Syn) forms a triple complex with anionic lipids (such as cardiolipin) and cytochrome c, which exerts a peroxidase activity. The latter catalyzes covalent hetero-oligomerization of Syn with cytochrome c into high molecular weight aggregates. Syn is a preferred substrate of this reaction and is oxidized more readily than cardiolipin, dopamine, and other phenolic substrates. Co-localization of Syn with cytochrome c was detected in aggregates formed upon proapoptotic stimulation of SH-SY5Y and HeLa cells and in dopaminergic substantia nigra neurons of rotenone-treated rats. Syn-cardiolipin exerted protection against cytochrome c-induced caspase-3 activation in a cell-free system, particularly in the presence of H(2)O(2). Direct delivery of Syn into mouse embryonic cells conferred resistance to proapoptotic caspase-3 activation. Conversely, small interfering RNA depletion of Syn in HeLa cells made them more sensitive to dopamine-induced apoptosis. In human Parkinson disease substantia nigra neurons, two-thirds of co-localized Syn-cytochrome c complexes occurred in Lewy neurites. Taken together, these results indicate that Syn may prevent execution of apoptosis in neurons through covalent hetero-oligomerization of cytochrome c. This immediate protective function of Syn is associated with the formation of the peroxidase complex representing a source of oxidative stress and postponed damage.


Subject(s)
Cytochromes c/metabolism , Parkinson Disease/physiopathology , Peroxidases/metabolism , Synucleins/metabolism , Animals , Apoptosis , Cardiolipins/physiology , Cell Line, Tumor , Cloning, Molecular , Cross-Linking Reagents , HeLa Cells/physiology , Humans , Lipids/physiology , Mice , Neuroblastoma , Neurons/physiology , Oxidative Stress , Parkinson Disease/enzymology , RNA, Small Interfering/genetics , Synucleins/genetics
2.
Am J Physiol Cell Physiol ; 292(2): C708-18, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17050617

ABSTRACT

In animal models of neurodegenerative diseases pathological changes vary with the type of organ and species of the animals. We studied differences in the mitochondrial permeability transition (mPT) and reactive oxygen species (ROS) generation in the liver (LM) and brain (BM) of Sprague-Dawley rats and C57Bl mice. In the presence of ADP mouse LM and rat LM required three times less Ca(2+) to initiate mPT than the corresponding BM. Mouse LM and BM sequestered 70% and 50% more Ca(2+) phosphate than the rat LM and BM. MBM generated 50% more ROS with glutamate than the RBM, but not with succinate. With the NAD substrates, generation of ROS do not depend on the energy state of the BM. Organization of the respiratory complexes into the respirasome is a possible mechanism to prevent ROS generation in the BM. With BM oxidizing succinate, 80% of ROS generation was energy dependent. Induction of mPT does not affect ROS generation with NAD substrates and inhibit with succinate as a substrate. The relative insensitivity of the liver to systemic insults is associated with its high regenerative capacity. Neuronal cells with low regenerative capacity and a long life span protect themselves by minimizing ROS generation and by the ability to withstand very large Ca(2+) insults. We suggest that additional factors, such as oxidative stress, are required to initiate neurodegeneration. Thus the observed differences in the Ca(2+)-induced mPT and ROS generation may underlie both the organ-specific and species-specific variability in the animal models of neurodegenerative diseases.


Subject(s)
Brain/metabolism , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Animals , Brain/ultrastructure , Calcium/metabolism , Hydrogen/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria, Liver/metabolism , Mitochondrial Membranes/metabolism , Organ Specificity , Permeability , Phosphates/metabolism , Rats , Rats, Sprague-Dawley , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...