Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 343
Filter
1.
Res Sq ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38978590

ABSTRACT

Background: This study evaluated the clinical characteristics of neuronal ceroid lipofuscinosis type 7 or CLN7 disease spectrum to characterize the clinical, electrophysiologic and neuroimaging phenotypes. Methods: We performed a single-center cross sectional data collection along with retrospective medical chart review in patients with a genetic diagnosis of CLN7. This study received ethical approval by the University of Texas Southwestern Medical Center Institutional Review Board. A total of 8 patients were included between the ages of 4 to 6 years. All patients had a genetic diagnosis of CLN7 with homozygous or compound heterozygous mutations in the MFSD8 gene. The information collected includes patient demographics, developmental history, neurological events including seizures and neurodevelopmental regression along with further evaluation of brain magnetic resonance imaging and electrophysiological findings. The clinical phenotype is described through cross sectional and retrospective data collection and standardized tools assessing quality of life and functional skills. Conclusions: Our findings in this cohort of CLN7 patients indicated that development is initially normal with onset of clinical symptoms as early as two years of age. Language problems were noted prior to or at the onset of seizures in all cases. Gait problems were noted prior to seizure onset in 3 of 8 patients, and at or within 6 months after the onset of seizures in 5 of 8 patients. All patients followed a progressive course of language, motor, and neurocognitive deterioration. Congruent with the medical history, our patients had significantly low scores on adaptive abilities. Natural history data such as this can be used to support future clinical trial designs.

2.
J Neurol Sci ; 463: 123110, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38964269

ABSTRACT

INTRODUCTION: No validated algorithm exists to identify patients with neuromyelitis optica spectrum disorder (NMOSD) in healthcare claims data. We developed and tested the performance of a healthcare claims-based algorithm to identify patients with NMOSD. METHODS: Using medical record data of 101 adults with NMOSD, multiple sclerosis (MS), or myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), we tested the sensitivity and specificity of claims-based algorithms developed through interviews with neurologists. We tested the best-performing algorithm's face validity using 2016-2019 data from IBM MarketScan Commercial and Medicare Supplemental databases. Demographics and clinical characteristics were reported. RESULTS: Algorithm inclusion criteria were age ≥ 18 years and (≥1 NMO diagnosis [or ≥ 1 transverse myelitis (TM) and ≥ 1 optic neuritis (ON) diagnosis] and ≥ 1 NMOSD drug) or (≥2 NMO diagnoses ≥90 days apart). Exclusion criteria were MS diagnosis or use of MS-specific drug after last NMO diagnosis or NMOSD drug; sarcoidosis diagnosis after last NMO diagnosis; or use of ≥1 immune checkpoint inhibitor. In medical record billing data of 50 patients with NMOSD, 30 with MS, and 21 with MOGAD, the algorithm had 82.0% sensitivity and 70.6% specificity. When applied to healthcare claims data, demographic and clinical features of the identified cohort were similar to known demographics of NMOSD. CONCLUSIONS: This clinically derived algorithm performed well in medical records. When tested in healthcare claims, demographics and clinical characteristics were consistent with previous clinical findings. This algorithm will enable a more accurate estimation of NMOSD disease burden using insurance claims datasets.

3.
J Neuroinflammation ; 21(1): 161, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915059

ABSTRACT

BACKGROUND: Pediatric acute transverse myelitis (ATM) accounts for 20-30% of children presenting with a first acquired demyelinating syndrome (ADS) and may be the first clinical presentation of a relapsing ADS such as multiple sclerosis (MS). B cells have been strongly implicated in the pathogenesis of adult MS. However, little is known about B cells in pediatric MS, and even less so in pediatric ATM. Our lab previously showed that plasmablasts (PB), the earliest B cell subtype producing antibody, are expanded in adult ATM, and that these PBs produce self-reactive antibodies that target neurons. The goal of this study was to examine PB frequency and phenotype, immunoglobulin selection, and B cell receptor reactivity in pediatric patients presenting with ATM to gain insight to B cell involvement in disease. METHODS: We compared the PB frequency and phenotype of 5 pediatric ATM patients and 10 pediatric healthy controls (HC) and compared them to previously reported adult ATM patients using cytometric data. We purified bulk IgG from the plasma samples and cloned 20 recombinant human antibodies (rhAbs) from individual PBs isolated from the blood. Plasma-derived IgG and rhAb autoreactivity was measured by mean fluorescence intensity (MFI) in neurons and astrocytes of murine brain or spinal cord and primary human astrocytes. We determined the potential impact of these rhAbs on astrocyte health by measuring stress and apoptotic response. RESULTS: We found that pediatric ATM patients had a reduced frequency of peripheral blood PB. Serum IgG autoreactivity to neurons in EAE spinal cord was similar in the pediatric ATM patients and HC. However, serum IgG autoreactivity to astrocytes in EAE spinal cord was reduced in pediatric ATM patients compared to pediatric HC. Astrocyte-binding strength of rhAbs cloned from PBs was dependent on somatic hypermutation accumulation in the pediatric ATM cohort, but not HC. A similar observation in predilection for astrocyte binding over neuron binding of individual antibodies cloned from PBs was made in EAE brain tissue. Finally, exposure of human primary astrocytes to these astrocyte-binding antibodies increased astrocytic stress but did not lead to apoptosis. CONCLUSIONS: Discordance in humoral immune responses to astrocytes may distinguish pediatric ATM from HC.


Subject(s)
Astrocytes , Myelitis, Transverse , Humans , Myelitis, Transverse/immunology , Animals , Female , Astrocytes/metabolism , Astrocytes/immunology , Child , Mice , Male , Adolescent , Plasma Cells/immunology , Plasma Cells/metabolism , Autoantibodies/immunology , Autoantibodies/blood , Mice, Inbred C57BL , Cells, Cultured , Child, Preschool , Immunoglobulin G/immunology , Immunoglobulin G/blood , Spinal Cord/metabolism , Spinal Cord/immunology , Spinal Cord/pathology
4.
Nat Med ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942994

ABSTRACT

There are more than 10,000 individual rare diseases and most are without therapy. Personalized genetic therapy represents one promising approach for their treatment. We present a road map for individualized treatment of an ultra-rare disease by establishing a gene replacement therapy developed for a single patient with hereditary spastic paraplegia type 50 (SPG50). Through a multicenter collaboration, an adeno-associated virus-based gene therapy product carrying the AP4M1 gene was created and successfully administered intrathecally to a 4-year-old patient within 3 years of diagnosis as part of a single-patient phase 1 trial. Primary endpoints were safety and tolerability, and secondary endpoints evaluated efficacy. At 12 months after dosing, the therapy was well tolerated. No serious adverse events were observed, with minor events, including transient neutropenia and Clostridioides difficile gastroenteritis, experienced but resolved. Preliminary efficacy measures suggest a stabilization of the disease course. Longer follow-up is needed to confirm the safety and provide additional insights on the efficacy of the therapy. Overall, this report supports the safety of gene therapy for SPG50 and provides insights into precision therapy development for rare diseases. Clinical trial registration: NCT06069687 .

6.
JAMA Neurol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466277

ABSTRACT

Importance: Biomarkers distinguishing nonrelapsing progressive disease biology from relapsing biology in multiple sclerosis (MS) are lacking. Cerebrospinal fluid (CSF) is an accessible fluid that most closely reflects central nervous system biology. Objective: To identify CSF biological measures associated with progressive MS pathobiology. Design, Setting, and Participants: This cohort study assessed data from 2 prospective MS cohorts: a test cohort provided serial CSF, clinical, and imaging assessments in a multicenter study of patients with relapsing MS (RMS) or primary progressive MS (PPMS) who were initiating anti-CD20 treatment (recruitment: 2016-2018; analysis: 2020-2023). A single-site confirmation cohort was used to assess CSF at baseline and long-term (>10 year) clinical follow-up (analysis: 2022-2023). Exposures: Test-cohort participants initiated standard-of-care ocrelizumab treatment. Confirmation-cohort participants were untreated or received standard-of-care disease-modifying MS therapies. Main Outcomes and Measures: Twenty-five CSF markers, including neurofilament light chain, neurofilament heavy chain, and glial fibrillary acid protein (GFAP); 24-week confirmed disability progression (CDP24); and brain magnetic resonance imaging measures reflecting focal injury, tissue loss, and progressive biology (slowly expanding lesions [SELs]). Results: The test cohort (n = 131) included 100 patients with RMS (mean [SD] age, 36.6 [10.4] years; 68 [68%] female and 32 [32%] male; Expanded Disability Status Scale [EDSS] score, 0-5.5), and 31 patients with PPMS (mean [SD] age, 44.9 [7.4] years; 15 [48%] female and 16 [52%] male; EDSS score, 3.0-6.5). The confirmation cohort (n = 68) included 41 patients with RMS and 27 with PPMS enrolled at diagnosis (age, 40 years [range, 20-61 years]; 47 [69%] female and 21 [31%] male). In the test cohort, GFAP was correlated with SEL count (r = 0.33), greater proportion of T2 lesion volume from SELs (r = 0.24), and lower T1-weighted intensity within SELs (r = -0.33) but not with acute inflammatory measures. Neurofilament heavy chain was correlated with SEL count (r = 0.25) and lower T1-weighted intensity within SELs (r = -0.28). Immune markers correlated with measures of acute inflammation and, unlike GFAP, were impacted by anti-CD20. In the confirmation cohort, higher baseline CSF GFAP levels were associated with long-term CDP24 (hazard ratio, 2.1; 95% CI, 1.3-3.4; P = .002). Conclusions and Relevance: In this study, activated glial markers (in particular GFAP) and neurofilament heavy chain were associated specifically with nonrelapsing progressive disease outcomes (independent of acute inflammatory activity). Elevated CSF GFAP was associated with long-term MS disease progression.

7.
JAMA Psychiatry ; 81(5): 437-446, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38446471

ABSTRACT

Importance: Posttraumatic stress disorder (PTSD) is a common psychiatric disorder that is particularly difficult to treat in military veterans. Noninvasive brain stimulation has significant potential as a novel treatment to reduce PTSD symptoms. Objective: To test whether active transcranial direct current stimulation (tDCS) plus virtual reality (VR) is superior to sham tDCS plus VR for warzone-related PTSD. Design, Setting, and Participants: This double-blind randomized clinical trial was conducted among US military veterans enrolled from April 2018 to May 2023 at a secondary care Department of Veterans Affairs hospital and included 1- and 3-month follow-up visits. Participants included US military veterans with chronic PTSD and warzone-related exposure, recruited via referral and advertisement. Patients in psychiatric treatment had to be on a stable regimen for at least 6 weeks to be eligible for enrollment. Data were analyzed from May to September 2023. Intervention: Participants were randomly assigned to receive 2-mA anodal tDCS or sham tDCS targeted to the ventromedial prefrontal cortex, during six 25-minute sessions of standardized warzone VR exposure, delivered over 2 to 3 weeks. Main Outcomes and Measures: The co-primary outcomes were self-reported PTSD symptoms, measured via the PTSD checklist for DSM-5 (PCL-5), alongside quality of life. Other outcomes included psychophysiological arousal, clinician-assessed PTSD, depression, and social/occupational function. Results: A total of 54 participants (mean [SD] age, 45.7 [10.5] years; 51 [94%] males) were assessed, including 26 in the active tDCS group and 28 in the sham tDCS group. Participants in the active tDCS group reported a superior reduction in self-reported PTSD symptom severity at 1 month (t = -2.27, P = .02; Cohen d = -0.82). There were no significant differences in quality of life between active and sham tDCS groups. Active tDCS significantly accelerated psychophysiological habituation to VR events between sessions compared with sham tDCS (F5,7689.8 = 4.65; P < .001). Adverse effects were consistent with the known safety profile of the corresponding interventions. Conclusions and Relevance: These findings suggest that combined tDCS plus VR may be a promising strategy for PTSD reduction and underscore the innovative potential of these combined technologies. Trial Registration: ClinicalTrials.gov Identifier: NCT03372460.


Subject(s)
Prefrontal Cortex , Stress Disorders, Post-Traumatic , Transcranial Direct Current Stimulation , Veterans , Humans , Stress Disorders, Post-Traumatic/therapy , Transcranial Direct Current Stimulation/methods , Male , Female , Double-Blind Method , Adult , Veterans/psychology , Middle Aged , Prefrontal Cortex/physiopathology , Virtual Reality Exposure Therapy/methods , Virtual Reality
8.
Mult Scler Relat Disord ; 84: 105497, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364768

ABSTRACT

BACKGROUND: Prognostic markers for relapse and neurological disability following the first clinical event in children with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) remain lacking. We investigated the clinical profiles and early prognostic factors associated with relapsing disease or impaired functional outcome in a large single-center cohort of pediatric MOGAD. METHODS: We retrospectively analyzed the clinical and paraclinical data and treatment outcomes of children with MOGAD seen at Children's Health in Dallas, Texas from 2009 to 2022. Univariate analyses were used to evaluate factors from initial event associated with relapsing disease course and impaired functional outcome (modified Rankin scale [mRS] >1) at final follow-up. RESULTS: Our cohort comprised of 87 children of diverse race/ethnicity. Presentation with acute disseminated encephalomyelitis (ADEM) was more frequent in children aged ≤8 years and Caucasian background, whereas presentation with optic neuritis was more common in children aged >8 years and other race/ethnicity. 44.3 % (27/61) had relapsing disease course, of whom 48.0 % had multiple relapses. 30.3 % (23/76) had final mRS >1. Children with abnormal electroencephalogram had reduced relapse risk. Children with ADEM presentation, severe disease, low MOG-IgG titer, and central and systemic inflammation (represented by cerebrospinal fluid pleocytosis and serum leukocytosis, respectively) at onset had higher likelihood of final mRS >1. CONCLUSION: Abnormal electroencephalogram at the first event was associated with reduced relapse risk while disease severity and peripheral inflammation significantly contributed to final neurological disability. Further studies are needed to validate these findings as early risk factors for disability and relapse and to identify optimal treatment strategies.


Subject(s)
Autoantibodies , Encephalomyelitis, Acute Disseminated , Child , Humans , Myelin-Oligodendrocyte Glycoprotein , Retrospective Studies , Encephalomyelitis, Acute Disseminated/diagnosis , Inflammation , Chronic Disease , Disease Progression , Recurrence
9.
Mult Scler ; 30(3): 308-315, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332747

ABSTRACT

BACKGROUND AND OBJECTIVE: Prior Epstein-Barr virus (EBV) infection is associated with an increased risk of pediatric-onset multiple sclerosis (POMS) and adult-onset multiple sclerosis (MS). It has been challenging to elucidate the biological mechanisms underlying this association. We examined the interactions between candidate human leukocyte antigen (HLA) and non-HLA variants and childhood EBV infection as it may provide mechanistic insights into EBV-associated MS. METHODS: Cases and controls were enrolled in the Environmental and Genetic Risk Factors for Pediatric MS study of the US Network of Pediatric MS Centers. Participants were categorized as seropositive and seronegative for EBV-viral capsid antigen (VCA). The association between prior EBV infection and having POMS was estimated with logistic regression. Interactions between EBV serostatus, major HLA MS risk factors, and non-HLA POMS risk variants associated with response to EBV infection were also evaluated with logistic regression. Models were adjusted for sex, age, genetic ancestry, and the mother's education. Additive interactions were calculated using relative risk due to interaction (RERI) and attributable proportions (APs). RESULTS: A total of 473 POMS cases and 702 controls contributed to the analyses. Anti-VCA seropositivity was significantly higher in POMS cases compared to controls (94.6% vs 60.7%, p < 0.001). There was evidence for additive interaction between childhood EBV infection and the presence of the HLA-DRB1*15 allele (RERI = 10.25, 95% confidence interval (CI) = 3.78 to 16.72; AP = 0.61, 95% CI = 0.47 to 0.75). There was evidence for multiplicative interaction (p < 0.05) between childhood EBV infection and the presence of DRB1*15 alleles (odds ratio (OR) = 3.43, 95% CI = 1.06 to 11.07). Among the pediatric MS variants also associated with EBV infection, we detected evidence for additive interaction (p = 0.02) between prior EBV infection and the presence of the GG genotype in risk variant (rs2255214) within CD86 (AP = 0.30, 95% CI = 0.03 to 0.58). CONCLUSION: We report evidence for interactions between childhood EBV infection and DRB1*15 and the GG genotype of CD86 POMS risk variant. Our results suggest an important role of antigen-presenting cells (APCs) in EBV-associated POMS risk.


Subject(s)
Epstein-Barr Virus Infections , Multiple Sclerosis , Adult , Child , Humans , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , Risk Factors , HLA-DRB1 Chains/genetics , Antibodies
10.
J Orthop Traumatol ; 25(1): 8, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381214

ABSTRACT

BACKGROUND: The network of intermediate filament proteins underlying the inner nuclear membrane forms the nuclear lamina. Lamins have been associated with important cellular functions: DNA replication, chromatin organization, differentiation of the cell, apoptosis and in maintenance of nuclear structure. Little is known regarding the etiopathogenesis of adhesive capsulitis (AC); recently, a dysregulating fibrotic response starting from a subpopulation has been described within the fibroblast compartment, which suddenly turns on an activated phenotype. Considering the key role of A-type lamins in the regulation of cellular stability and function, our aim was to compare the lamin A/C expression between patients with AC and healthy controls. MATERIALS AND METHODS: A case-control study was performed between January 2020 and December 2021. Tissue samples excised from the rotator interval were analysed for lamin A/C expression by immunohistochemistry. Patients with AC were arbitrarily distinguished according to the severity of shoulder flexion limitation: ≥ 90° and < 90°. Controls were represented by samples obtained by normal rotator interval excised from patients submitted to shoulder surgery. The intensity of staining was graded, and an H-score was assigned. Statistical analysis was performed (Chi-square analysis; significance was set at alpha = 0.05). RESULTS: We enrolled 26 patients [12 male and 14 female, mean age (SD): 52.3 (6.08)] and 15 controls [6 male and 9 female, mean age (SD): 57.1 (5.3)]. The expression of lamin A/C was found to be significantly lower in the fibroblasts of patients with adhesive capsulitis when compared with controls (intensity of staining: p: 0.005; H-score: 0.034); no differences were found regarding the synoviocytes (p: > 0.05). Considering only patients with AC, lamin A/C intensity staining was found to be significantly higher in samples where acute inflammatory infiltrate was detected (p: 0.004). No significant changes in levels of lamin A/C expression were documented between the mild and severe adhesive capsulitis severity groups. CONCLUSIONS: Our study demonstrated that the activity of lamin A/C in maintaining nuclear structural integrity and cell viability is decreased in patients with adhesive capsulitis. The phase of the pathogenetic process (freezing and early frozen) is the key factor for cell functionality. On the contrary, the clinical severity of adhesive capsulitis plays a marginal role in nuclear stability. LEVEL OF EVIDENCE: III.


Subject(s)
Bursitis , Lamin Type A , Humans , Female , Male , Case-Control Studies , Bursitis/surgery
12.
Neurol Clin ; 42(1): 155-163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37980113

ABSTRACT

Multiple sclerosis (MS) can cause significant disability to patients via relapse-associated worsening and progression independent of relapses. The causes of neuronal and myelin damage can include lymphocyte-mediated inflammation and microglial activation. Bruton's tyrosine kinase (BTK) is an enzyme that mediates B cell activation and the proinflammatory phenotype of microglia. Inhibiting BTK provides a novel therapeutic target for MS but also has a complicated pharmacology based on binding specificity, CNS penetration, half-life, and enzyme inhibition characteristics. Multiple agents are being studied in phase 3 trials, and each agent will have unique efficacy and safety profiles that must be considered individually.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism
13.
J Nanobiotechnology ; 21(1): 478, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38087362

ABSTRACT

BACKGROUND: Impaired brain energy metabolism has been observed in many neurodegenerative diseases, including Parkinson's disease (PD) and multiple sclerosis (MS). In both diseases, mitochondrial dysfunction and energetic impairment can lead to neuronal dysfunction and death. CNM-Au8® is a suspension of faceted, clean-surfaced gold nanocrystals that catalytically improves energetic metabolism in CNS cells, supporting neuroprotection and remyelination as demonstrated in multiple independent preclinical models. The objective of the Phase 2 REPAIR-MS and REPAIR-PD clinical trials was to investigate the effects of CNM-Au8, administered orally once daily for twelve or more weeks, on brain phosphorous-containing energy metabolite levels in participants with diagnoses of relapsing MS or idiopathic PD, respectively. RESULTS: Brain metabolites were measured using 7-Tesla 31P-MRS in two disease cohorts, 11 participants with stable relapsing MS and 13 participants with PD (n = 24 evaluable post-baseline scans). Compared to pre-treatment baseline, the mean NAD+/NADH ratio in the brain, a measure of energetic capacity, was significantly increased by 10.4% after 12 + weeks of treatment with CNM-Au8 (0.584 units, SD: 1.3; p = 0.037, paired t-test) in prespecified analyses of the combined treatment cohorts. Each disease cohort concordantly demonstrated increases in the NAD+/NADH ratio but did not reach significance individually (p = 0.11 and p = 0.14, PD and MS cohorts, respectively). Significant treatment effects were also observed for secondary and exploratory imaging outcomes, including ß-ATP and phosphorylation potential across both cohorts. CONCLUSIONS: Our results demonstrate brain target engagement of CNM-Au8 as a direct modulator of brain energy metabolism, and support the further investigation of CNM-Au8 as a potential disease modifying drug for PD and MS.


Subject(s)
Multiple Sclerosis , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Multiple Sclerosis/drug therapy , NAD/metabolism , NAD/therapeutic use , Nanomedicine , Brain/metabolism
14.
Ther Adv Hematol ; 14: 20406207231201721, 2023.
Article in English | MEDLINE | ID: mdl-37822572

ABSTRACT

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by reactivation of the human polyomavirus 2 (HPyV-2). PML is associated with a high morbidity and mortality rate and there is currently no standard curative therapy. We report short-term immunologic response and long-term clinical outcomes in a patient diagnosed with follicular lymphoma (FL) who developed PML. Diagnosis of PML was established conclusively based on findings from a brain biopsy. The patient was treated with recombinant interleukin 2 (IL-2) and showed rapid clinical improvement. HPyV-2-specific T-cells were tracked longitudinally and correlation with clinical status, viral load, and radiographic imaging was documented. After the progression of the patient's FL, which required an allogeneic bone marrow transplant, the patient prophylactically received human leukocyte antigen-matched donor-derived HPyV-2 T-cells to prevent the recurrence of the PML as part of a clinical trial. Twelve years after the initial diagnosis of PML, he did not develop a relapse of his PML, supporting data that therapies that increase HPyV-2-specific T-cells, including IL-2, may be effective in the management of PML.

15.
J Immunol ; 211(9): 1332-1339, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37712756

ABSTRACT

Pediatric and adult autoimmune encephalitis (AE) are often associated with Abs to the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor (NMDAR). Very little is known regarding the cerebrospinal fluid humoral immune profile and Ab genetics associated with pediatric anti-NMDAR-AE. Using a combination of cellular, molecular, and immunogenetics tools, we collected cerebrospinal fluid from pediatric subjects and generated 1) flow cytometry data to calculate the frequency of B cell subtypes in the cerebrospinal fluid of pediatric subjects with anti-NMDAR-AE and controls, 2) a panel of recombinant human Abs from a pediatric case of anti-NMDAR-AE that was refractory to treatment, and 3) a detailed analysis of the Ab genes that bound the NR1 subunit of the NMDAR. Ag-experienced B cells including memory cells, plasmablasts, and Ab-secreting cells were expanded in the pediatric anti-NMDAR-AE cohort, but not in the controls. These Ag-experienced B cells in the cerebrospinal fluid of a pediatric case of NMDAR-AE that was refractory to treatment had expanded use of variable H chain family 2 (VH2) genes with high somatic hypermutation that all bound to the NR1 subunit of the NMDAR. A CDR3 motif was identified in this refractory case that likely drove early stage activation and expansion of naive B cells to Ab-secreting cells, facilitating autoimmunity associated with pediatric anti-NMDAR-AE through the production of Abs that bind NR1. These features of humoral immune responses in the cerebrospinal fluid of pediatric anti-NMDAR-AE patients may be relevant for clinical diagnosis and treatment.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Hashimoto Disease , Adult , Humans , Child , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/cerebrospinal fluid , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , B-Lymphocytes , Receptors, N-Methyl-D-Aspartate , Autoantibodies
16.
Mult Scler Relat Disord ; 77: 104841, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37467536

ABSTRACT

BACKGROUND: The treatment paradigm for multiple sclerosis (MS), particularly relapsing-remitting MS, is heavily reliant on biologic disease-modifying therapies (DMTs). However, the current cost of treatment acts as a significant barrier to access for patients. Over the next few years exclusivity periods for key biologic medicines used in MS are likely to end, opening the door for biosimilar medicines to enter the market. METHODS: In this review, we discuss what biosimilar medicines are, and how the existing experience with biosimilar medicines across multiple therapy areas can inform the assimilation of biosimilar medicines into the MS treatment landscape in Europe and the US. RESULTS: There is currently a lack of knowledge and awareness around the distinctions and similarities between small molecules, non-biological complex drugs, and biological medicines, as well as the different categories of follow-on successor medicines. These include biosimilar medicines that offer a matching efficacy and safety profile to the reference biologic. Understanding and recognition of the stringency of the approval pathways required for drug categories such as biosimilars are key in building confidence in treatment outcomes. For example, biosimilar medicines are sometimes perceived only as 'copies' of their reference biologic despite undergoing an extensive approval process requiring that no clinically meaningful differences are observed between the biosimilar medicine and the reference medicine. For MS, introduction of biosimilar medicines in the future will enable more people with MS to receive effective treatment, and also expand access to biologic DMTs in MS. Experiences from the use of biosimilars in multiple therapy areas have shown us that this can result in cost-saving benefits for a healthcare system. Introduction of biosimilar medicines in other therapy areas has also demonstrated the importance of appropriate, accurate education and information for their successful integration into clinical practice. CONCLUSION: In order to realize optimized treatment outcomes in MS in coming years and to find the appropriate place for biosimilar medicines in the changing MS landscape, it is essential that clinicians and people with MS understand the fundamentals of biosimilars, their potential benefits and consistency of treatment provided by a biosimilar medicine, given the matching efficacy and safety profile to its reference medicine. As evidenced in other therapy areas, biosimilar medicines may reduce key barriers to access by providing a cost-effective alternative to the MS treatment arsenal, while providing the same treatment outcomes as reference biologics.


Subject(s)
Biosimilar Pharmaceuticals , Multiple Sclerosis , Humans , Biosimilar Pharmaceuticals/therapeutic use , Multiple Sclerosis/drug therapy , Treatment Outcome , Europe
17.
Behav Ther ; 54(4): 610-622, 2023 07.
Article in English | MEDLINE | ID: mdl-37330252

ABSTRACT

Most U.S. adults, even more so those with psychiatric conditions like obsessive-compulsive disorder (OCD), do not engage in the recommended amount of physical activity (PA), despite the wide array of physical and mental health benefits associated with exercise. Therefore, it is essential to identify mechanistic factors that drive long-term exercise engagement so they can be targeted. Using the science of behavior change (SOBC) framework, this study examined potential predictors of long-term exercise engagement as a first step towards identifying modifiable mechanisms, in individuals with OCD, such as PA enjoyment, positive or negative affect, and behavioral activation. Fifty-six low-active patients (mean age = 38.8 ±â€¯13.0, 64% female) with a primary diagnosis of OCD were randomized to either aerobic exercise (AE; n = 28) or health education (HE; n = 28), and completed measures of exercise engagement, PA enjoyment, behavioral activation, and positive and negative affect at baseline, postintervention, and 3-, 6-, and 12-month follow-up. Significant predictors of long-term exercise engagement up to 6-months postintervention were baseline PA (Estimate = 0.29, 95%CI [0.09, 0.49], p = .005) and higher baseline PA enjoyment (Estimate = 1.09, 95%CI [0.30, 1.89], p = .008). Change in PA enjoyment from baseline to postintervention was greater in AE vs. HE, t(44) = -2.06, p = .046, d = -0.61, but endpoint PA enjoyment did not predict follow-up exercise engagement above and beyond baseline PA enjoyment. Other hypothesized potential mechanisms (baseline affect or behavioral activation) did not significantly predict exercise engagement. Results suggest that PA enjoyment may be an important modifiable target mechanism for intervention, even prior to a formal exercise intervention. Next steps aligned with the SOBC framework are discussed, including examining intervention strategies to target PA enjoyment, particularly among individuals with OCD or other psychiatric conditions, who may benefit most from long-term exercise engagement's effects on physical and mental health.


Subject(s)
Obsessive-Compulsive Disorder , Pleasure , Adult , Humans , Female , Middle Aged , Male , Exercise/psychology , Obsessive-Compulsive Disorder/therapy , Obsessive-Compulsive Disorder/psychology , Mental Health
18.
Mult Scler Relat Disord ; 76: 104802, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329787

ABSTRACT

BACKGROUND AND OBJECTIVES: The clinical spectrum of myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is heterogenous and has evolved over time since the commercial availability of the anti-MOG antibody assay. Subclinical disease activity has been previously reported in the visual pathway, but prevalence data remains limited. We investigated subclinical optic neuritis (ON) based on changes on retinal nerve fiber layer (RNFL) thickness on optic coherence tomography (OCT) in pediatric patients who tested positive for the anti-MOG antibody. METHODS: In this retrospective, single-center cohort study, we examined children with MOGAD with at least one complete assessment of the anterior visual pathway. Subclinical ON was defined by structural visual system disease in the absence of a subjective complaint of vision loss, pain (particularly with eye movement), or color desaturation. RESULTS: Records were reviewed from 85 children with MOGAD, 67 of whom (78.8%) had complete records for review. Eleven children (16.4%) had subclinical ON on OCT. Ten had significant reductions in RNFL, of which one had two distinct episodes of decreased RNFL, and one had significant elevations in RNFL. Of the eleven children with subclinical ON, six (54.5%) had a relapsing disease course. We also highlighted the clinical course of three children with subclinical ON detected on longitudinal OCT, including two who had subclinical ON outside of clinical relapses. CONCLUSION: Children with MOGAD can have subclinical ON events that can manifest as significant reductions or elevations in RNFL on OCT. OCT should be used routinely in the management and monitoring of MOGAD patients.


Subject(s)
Optic Neuritis , Tomography, Optical Coherence , Humans , Myelin-Oligodendrocyte Glycoprotein , Cohort Studies , Retrospective Studies , Optic Neuritis/diagnostic imaging , Retina , Vision Disorders , Autoantibodies
19.
Sci Rep ; 13(1): 6366, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076496

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is an established treatment for major depressive disorder (MDD) and shows promise for posttraumatic stress disorder (PTSD), yet effectiveness varies. Electroencephalography (EEG) can identify rTMS-associated brain changes. EEG oscillations are often examined using averaging approaches that mask finer time-scale dynamics. Recent advances show some brain oscillations emerge as transient increases in power, a phenomenon termed "Spectral Events," and that event characteristics correspond with cognitive functions. We applied Spectral Event analyses to identify potential EEG biomarkers of effective rTMS treatment. Resting 8-electrode EEG was collected from 23 patients with MDD and PTSD before and after 5 Hz rTMS targeting the left dorsolateral prefrontal cortex. Using an open-source toolbox ( https://github.com/jonescompneurolab/SpectralEvents ), we quantified event features and tested for treatment associated changes. Spectral Events in delta/theta (1-6 Hz), alpha (7-14 Hz), and beta (15-29 Hz) bands occurred in all patients. rTMS-induced improvement in comorbid MDD PTSD were associated with pre- to post-treatment changes in fronto-central electrode beta event features, including frontal beta event frequency spans and durations, and central beta event maxima power. Furthermore, frontal pre-treatment beta event duration correlated negatively with MDD symptom improvement. Beta events may provide new biomarkers of clinical response and advance the understanding of rTMS.


Subject(s)
Depressive Disorder, Major , Stress Disorders, Post-Traumatic , Humans , Depressive Disorder, Major/therapy , Transcranial Magnetic Stimulation , Stress Disorders, Post-Traumatic/therapy , Prefrontal Cortex/physiology , Electroencephalography , Treatment Outcome , Biomarkers
20.
Front Psychiatry ; 14: 1137681, 2023.
Article in English | MEDLINE | ID: mdl-36911138

ABSTRACT

Background: Caffeine is a widely used psychostimulant. In the brain, caffeine acts as a competitive, non-selective adenosine receptor antagonist of A1 and A2A, both known to modulate long-term potentiation (LTP), the cellular basis of learning and memory. Repetitive transcranial magnetic stimulation (rTMS) is theorized to work through LTP induction and can modulate cortical excitability as measured by motor evoked potentials (MEPs). The acute effects of single caffeine doses diminish rTMS-induced corticomotor plasticity. However, plasticity in chronic daily caffeine users has not been examined. Method: We conducted a post hoc secondary covariate analysis from two previously published plasticity-inducing pharmaco-rTMS studies combining 10 Hz rTMS and D-cycloserine (DCS) in twenty healthy subjects. Results: In this hypothesis-generating pilot study, we observed enhanced MEP facilitation in non-caffeine users compared to caffeine users and placebo. Conclusion: These preliminary data highlight a need to directly test the effects of caffeine in prospective well-powered studies, because in theory, they suggest that chronic caffeine use could limit learning or plasticity, including rTMS effectiveness.

SELECTION OF CITATIONS
SEARCH DETAIL
...