Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(41): 22504-22515, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37797332

ABSTRACT

Pyruvate Formate Lyase (PFL) catalyzes acetyl transfer from pyruvate to coenzyme a by a mechanism involving multiple amino acid radicals. A post-translationally installed glycyl radical (G734· in Escherichia coli) is essential for enzyme activity and two cysteines (C418 and C419) are proposed to form thiyl radicals during turnover, yet their unique roles in catalysis have not been directly demonstrated with both structural and electronic resolution. Methacrylate is an isostructural analog of pyruvate and an informative irreversible inhibitor of pfl. Here we demonstrate the mechanism of inhibition of pfl by methacrylate. Treatment of activated pfl with methacrylate results in the conversion of the G734· to a new radical species, concomitant with enzyme inhibition, centered at g = 2.0033. Spectral simulations, reactions with methacrylate isotopologues, and Density Functional Theory (DFT) calculations support our assignment of the radical to a C2 tertiary methacryl radical. The reaction is specific for C418, as evidenced by mass spectrometry. The methacryl radical decays over time, reforming G734·, and the decay exhibits a H/D solvent isotope effect of 3.4, consistent with H-atom transfer from an ionizable donor, presumably the C419 sulfhydryl group. Acrylate also inhibits PFL irreversibly, and alkylates C418, but we did not observe an acryl secondary radical in H2O or in D2O within 10 s, consistent with our DFT calculations and the expected reactivity of a secondary versus tertiary carbon-centered radical. Together, the results support unique roles of the two active site cysteines of PFL and a C419 S-H bond dissociation energy between that of a secondary and tertiary C-H bond.


Subject(s)
Lyases , Methacrylates , Free Radicals/metabolism , Acetyltransferases/metabolism , Escherichia coli/metabolism , Cysteine/chemistry , Pyruvates , Formates
2.
Analyst ; 148(15): 3650-3658, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37424451

ABSTRACT

Phosphite, the anion of phosphorus acid, is an important metabolite in the global biogeochemical phosphorus cycle and a phosphorus species with unique agricultural properties. As such, methods for detecting phosphite quantitatively and selectively are critical to evidencing phosphorus redox chemistry. Here, we present a fluorescence-based assay for phosphite, utilizing the NAD+-dependent oxidation of phosphite by phosphite dehydrogenase and the subsequent reduction of resazurin to resorufin. With the application of a thermostable phosphite dehydrogenase, a medium-invariant analytical approach, and novel sample preparation methods, the assay is capable of rapid and accurate phosphite quantification with a 3 µM limit of detection in a wide array of biologically- and environmentally-relevant matrices, including bacterial and archaeal cell lysate, seawater, anaerobic digester sludge, and plant tissue. We demonstrate the utility of the assay by quantitating phosphite uptake in a model crop plant in the presence or absence of a phosphite-oxidising strain of Pseudomonas stutzeri as a soil additive, establishing this bacterium as an efficient phosphite converting biofertilizer.


Subject(s)
Phosphites , Phosphites/metabolism , Bacteria/metabolism , Oxidation-Reduction , Phosphorus
3.
Methods Enzymol ; 662: 119-141, 2022.
Article in English | MEDLINE | ID: mdl-35101207

ABSTRACT

Cysteine thiyl radicals are implicated as cofactors in a variety of enzymatic transformations, as well as transient byproducts of oxidative stress, yet their reactivity has undermined their detailed study. Selenocysteine exhibits a lower corresponding selenyl radical reduction potential, thus taming this radical reactivity without significant steric perturbation, potentially affording a glimpse into otherwise fleeting events in thiyl radical catalysis. In this chapter, we describe a suite of fusion protein constructs for general and efficient production of site-specifically incorporated selenoproteins by a recently developed nonsense suppression technology. As a proof of concept, we produced NikJ, a member of the radical S-adenosyl methionine enzyme family involved in the biosynthesis of peptidyl nucleoside antibiotics. We place emphasis throughout the plasmid assembly, protein expression, and selenium quantitation on accommodating the structural and functional diversity of thiyl radical enzymes. The protocol produces NikJ with near quantitative selenocysteine insertion, 50% nonsense read-through, and facile protein purification.


Subject(s)
Selenocysteine , Selenoproteins , Cysteine/metabolism , Proteomics , S-Adenosylmethionine/metabolism , Selenocysteine/chemistry , Selenocysteine/metabolism , Selenoproteins/chemistry , Selenoproteins/genetics , Selenoproteins/metabolism
4.
J Am Chem Soc ; 143(1): 176-183, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33353307

ABSTRACT

The class Ia ribonucleotide reductase of Escherichia coli requires strict regulation of long-range radical transfer between two subunits, α and ß, through a series of redox-active amino acids (Y122•[ß] ↔ W48?[ß] ↔ Y356[ß] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]). Nowhere is this more precarious than at the subunit interface. Here, we show that the oxidation of Y356 is regulated by proton release involving a specific residue, E52[ß], which is part of a water channel at the subunit interface for rapid proton transfer to the bulk solvent. An E52Q variant is incapable of Y356 oxidation via the native radical transfer pathway or non-native photochemical oxidation, following photosensitization by covalent attachment of a photo-oxidant at position 355[ß]. Substitution of Y356 for various FnY analogues in an E52Q-photoß2, where the side chain remains deprotonated, recovered photochemical enzymatic turnover. Transient absorption and emission data support the conclusion that Y356 oxidation requires E52 for proton management, suggesting its essential role in gating radical transport across the protein-protein interface.


Subject(s)
Free Radicals/chemistry , Protons , Ribonucleotide Reductases/chemistry , Coordination Complexes/chemistry , Coordination Complexes/radiation effects , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Glutamic Acid/chemistry , Kinetics , Light , Mutagenesis, Site-Directed , Mutation , Oxidation-Reduction , Rhenium/chemistry , Rhenium/radiation effects , Ribonucleotide Reductases/genetics , Tyrosine/chemistry
5.
Annu Rev Biochem ; 89: 45-75, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569524

ABSTRACT

Ribonucleotide reductases (RNRs) catalyze the de novo conversion of nucleotides to deoxynucleotides in all organisms, controlling their relative ratios and abundance. In doing so, they play an important role in fidelity of DNA replication and repair. RNRs' central role in nucleic acid metabolism has resulted in five therapeutics that inhibit human RNRs. In this review, we discuss the structural, dynamic, and mechanistic aspects of RNR activity and regulation, primarily for the human and Escherichia coli class Ia enzymes. The unusual radical-based organic chemistry of nucleotide reduction, the inorganic chemistry of the essential metallo-cofactor biosynthesis/maintenance, the transport of a radical over a long distance, and the dynamics of subunit interactions all present distinct entry points toward RNR inhibition that are relevant for drug discovery. We describe the current mechanistic understanding of small molecules that target different elements of RNR function, including downstream pathways that lead to cell cytotoxicity. We conclude by summarizing novel and emergent RNR targeting motifs for cancer and antibiotic therapeutics.


Subject(s)
Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Escherichia coli Infections/drug therapy , Neoplasms/drug therapy , Nucleotides/metabolism , Ribonucleotide Reductases/chemistry , Anti-Bacterial Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Biocatalysis , Drug Discovery/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Infections/enzymology , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Humans , Molecular Docking Simulation , Neoplasms/enzymology , Neoplasms/genetics , Neoplasms/pathology , Nucleotides/chemistry , Oxidation-Reduction , Protein Structure, Secondary , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Ribonucleotide Reductases/antagonists & inhibitors , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship
6.
Biochemistry ; 58(50): 5074-5084, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31774661

ABSTRACT

Ribonucleotide reductases (RNRs) employ a complex radical-based mechanism during nucleotide reduction involving multiple active site cysteines that both activate the substrate and reduce it. Using an engineered allo-tRNA, we substituted two active site cysteines with distinct function in the class Ia RNR of Escherichia coli for selenocysteine (U) via amber codon suppression, with efficiency and selectivity enabling biochemical and biophysical studies. Examination of the interactions of the C439U α2 mutant protein with nucleotide substrates and the cognate ß2 subunit demonstrates that the endogenous Y122• of ß2 is reduced under turnover conditions, presumably through radical transfer to form a transient U439• species. This putative U439• species is formed in a kinetically competent fashion but is incapable of initiating nucleotide reduction via 3'-H abstraction. An analogous C225U α2 protein is also capable of radical transfer from Y122•, but the radical-based substrate chemistry partitions between turnover and stalled reduction akin to the reactivity of mechanism-based inhibitors of RNR. The results collectively demonstrate the essential role of cysteine redox chemistry in the class I RNRs and establish a new tool for investigating thiyl radical reactivity in biology.


Subject(s)
Amino Acid Substitution , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Selenocysteine , Models, Molecular , Protein Conformation , Ribonucleotide Reductases/chemistry
7.
J Am Chem Soc ; 140(46): 15744-15752, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30347141

ABSTRACT

Class Ia ribonucleotide reductase (RNR) of Escherichia coli contains an unusually stable tyrosyl radical cofactor in the ß2 subunit (Y122•) necessary for nucleotide reductase activity. Upon binding the cognate α2 subunit, loaded with nucleoside diphosphate substrate and an allosteric/activity effector, a rate determining conformational change(s) enables rapid radical transfer (RT) within the active α2ß2 complex from the Y122• site in ß2 to the substrate activating cysteine residue (C439) in α2 via a pathway of redox active amino acids (Y122[ß] ↔ W48[ß]? ↔ Y356[ß] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]) spanning >35 Å. Ionizable residues at the α2ß2 interface are essential in mediating RT, and therefore control activity. One of these mutations, E350X (where X = A, D, Q) in ß2, obviates all RT, though the mechanism of control by which E350 mediates RT remains unclear. Herein, we utilize an E350Q-photoß2 construct to photochemically rescue RNR activity from an otherwise inactive construct, wherein the initial RT event (Y122• → Y356) is replaced by direct photochemical radical generation of Y356•. These data present compelling evidence that E350 conveys allosteric information between the α2 and ß2 subunits facilitating conformational gating of RT that specifically targets Y122• reduction, while the fidelity of the remainder of the RT pathway is retained.


Subject(s)
Ribonucleotide Reductases/chemistry , Electron Transport , Escherichia coli/enzymology , Free Radicals/chemistry , Free Radicals/metabolism , Models, Molecular , Photochemical Processes , Protein Conformation , Ribonucleotide Reductases/metabolism
8.
J Biol Chem ; 293(26): 10413-10414, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29959279

ABSTRACT

Ribonucleotide reductases (RNRs) are essential enzymes producing de novo deoxynucleotide (dNTP) building blocks for DNA replication and repair and regulating dNTP pools important for fidelity of these processes. A new study reveals that the class Ia Escherichia coli RNR is regulated by dATP via stabilization of an inactive α4ß4 quaternary structure, slowing formation of the active α2ß2 structure. The results support the importance of the regulatory α4ß4 complex providing insight in design of experiments to understand RNR regulation in vivo.


Subject(s)
Deoxyadenine Nucleotides/pharmacology , Ribonucleotide Reductases/antagonists & inhibitors , Allosteric Regulation/drug effects , Catalytic Domain , Escherichia coli/enzymology , Models, Molecular , Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/metabolism
9.
Acc Chem Res ; 50(11): 2718-2726, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29083854

ABSTRACT

Rapid and facile redox chemistry is exemplified in nature by the oxidoreductases, the class of enzymes that catalyze electron transfer (ET) from a donor to an acceptor. The key role of oxidoreductases in metabolism and biosynthesis has imposed evolutionary pressure to enhance enzyme efficiency, pushing some toward the diffusion limit. Understanding the detailed molecular mechanisms of these highly optimized enzymes would provide an important foundation for the rational design of catalysts for multielectron chemistry, including fuel production. The hydrogenases (H2ases) are the oxidoreductases that catalyze the most basic electron and proton transfer reactions relevant to fuel production, the interconversion of protons and hydrogen, with kcat > 103 s-1. Thus, they provide a model system for studying the efficiency exhibited by oxidoreductases. Because of the extraordinarily fast catalytic rates of these enzymes, their mechanisms have been difficult to study directly but instead have been inferred from structural and steady-state measurements. Although informative, the kinetic competency of observed equilibrium steps can only be suggested by these methods, not demonstrated, because the fundamental (fast) catalytic steps remain unresolved, resulting in minimal insight regarding the underlying ET and proton transfer (PT) events. Motivated by this gap in understanding, we developed an approach capable of observing elementary ET and PT during such fast enzyme turnover by combining a laser-induced potential jump with time-resolved spectroscopy. The potential jump initiates enzyme turnover by utilizing a short-pulsed laser to release a "caged" electron from a nanomaterial or NAD(P)H, which is then captured by a mediator such as methyl viologen. The subsequent enzyme reduction and turnover are monitored by transient absorption spectroscopy in the visible or mid-IR spectral regions. The method is completely general and in principle can be applied to any catalytic redox reaction. In the case of hydrogenases, time-resolved infrared spectroscopy of the active site CO ligands is particularly informative since the IR frequencies are exquisitely sensitive to the redox and protonation states. Using this methodology, we have developed a description of the catalytic mechanism of the Pyrococcus furiosus [NiFe]-hydrogenase by demonstrating the kinetic and chemical competency of equilibrium states and by invoking new intermediates. Additionally, the pre-steady-state kinetics revealed a distinct role of proton tunneling in concerted electron-proton transfer (EPT) modulated by a conserved glutamic acid residue. Similar multisite EPT processes have been implicated in numerous enzymes but have not been demonstrated explicitly. These methods have also been successfully applied to an electron bifurcating [FeFe]-H2ase from Thermotoga maritima, establishing the kinetic competency of the Hox, Hred, and Hsred intermediates of the [FeFe] enzyme. These results provide fundamental insight on the factors that control low barrier proton and electron flow in enzymes and thus provide a foundation for the rational design of reversible biomimetic catalysts.


Subject(s)
Hydrogenase/metabolism , Biocatalysis , Electron Transport , Hydrogenase/chemistry , Photochemical Processes , Spectrum Analysis , Time Factors
10.
J Am Chem Soc ; 139(46): 16657-16665, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29037038

ABSTRACT

Ribonucleotide reductases (RNR) catalyze the reduction of nucleotides to deoxynucleotides through a mechanism involving an essential cysteine based thiyl radical. In the E. coli class 1a RNR the thiyl radical (C439•) is a transient species generated by radical transfer (RT) from a stable diferric-tyrosyl radical cofactor located >35 Å away across the α2:ß2 subunit interface. RT is facilitated by sequential proton-coupled electron transfer (PCET) steps along a pathway of redox active amino acids (Y122ß â†” [W48ß?] ↔ Y356ß â†” Y731α ↔ Y730α ↔ C439α). The mutant R411A(α) disrupts the H-bonding environment and conformation of Y731, ostensibly breaking the RT pathway in α2. However, the R411A protein retains significant enzymatic activity, suggesting Y731 is conformationally dynamic on the time scale of turnover. Installation of the radical trap 3-amino tyrosine (NH2Y) by amber codon suppression at positions Y731 or Y730 and investigation of the NH2Y• trapped state in the active α2:ß2 complex by HYSCORE spectroscopy validate that the perturbed conformation of Y731 in R411A-α2 is dynamic, reforming the H-bond between Y731 and Y730 to allow RT to propagate to Y730. Kinetic studies facilitated by photochemical radical generation reveal that Y731 changes conformation on the ns-µs time scale, significantly faster than the enzymatic kcat. Furthermore, the kinetics of RT across the subunit interface were directly assessed for the first time, demonstrating conformationally dependent RT rates that increase from 0.6 to 1.6 × 104 s-1 when comparing wild type to R411A-α2, respectively. These results illustrate the role of conformational flexibility in modulating RT kinetics by targeting the PCET pathway of radical transport.


Subject(s)
Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/metabolism , Electrons , Escherichia coli/enzymology , Free Radicals/metabolism , Hydrogen Bonding , Kinetics , Models, Molecular , Mutation , Oxidation-Reduction , Protons , Reproducibility of Results , Tyrosine/metabolism
11.
J Am Chem Soc ; 138(39): 13013-13021, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27617712

ABSTRACT

[NiFe] hydrogenases are metalloenzymes that catalyze the reversible oxidation of H2. While electron transfer to and from the active site is understood to occur through iron-sulfur clusters, the mechanism of proton transfer is still debated. Two mechanisms for proton exchange with the active site have been proposed that involve distinct and conserved ionizable amino acid residues, one a glutamate, and the other an arginine. To examine the potential role of the conserved glutamate on active site acid-base chemistry, we mutated the putative proton donor E17 to Q in the soluble hydrogenase I from Pyrococcus furiosus using site directed mutagenesis. FTIR spectroscopy, sensitive to the CO and CN ligands of the active site, reveals catalytically active species generated upon reduction with H2, including absorption features consistent with the Nia-C intermediate. Time-resolved IR spectroscopy, which probes active site dynamics after hydride photolysis from Nia-C, indicates the E17Q mutation does not interfere with the hydride photolysis process generating known intermediates Nia-I1 and Nia-I2. Strikingly, the E17Q mutation disrupts obligatory proton-coupled electron transfer from the Nia-I1 state, thereby preventing formation of Nia-S. These results directly establish E17 as a proton donor/acceptor in the Nia-S ↔ Nia-C equilibrium.


Subject(s)
Glutamic Acid/metabolism , Hydrogenase/metabolism , Protons , Catalytic Domain , Electron Transport , Hydrogenase/chemistry , Models, Molecular , Pyrococcus furiosus/enzymology
12.
Biochemistry ; 55(23): 3234-40, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27159163

ABSTRACT

The Escherichia coli class Ia ribonucleotide reductase (RNR) achieves forward and reverse proton-coupled electron transfer (PCET) over a pathway of redox active amino acids (ß-Y122 ⇌ ß-Y356 ⇌ α-Y731 ⇌ α-Y730 ⇌ α-C439) spanning ∼35 Å and two subunits every time it turns over. We have developed photoRNRs that allow radical transport to be phototriggered at tyrosine (Y) or fluorotyrosine (FnY) residues along the PCET pathway. We now report a new photoRNR in which photooxidation of a tryptophan (W) residue replacing Y356 within the α/ß subunit interface proceeds by a stepwise ET/PT (electron transfer then proton transfer) mechanism and provides an orthogonal spectroscopic handle with respect to radical pathway residues Y731 and Y730 in α. This construct displays an ∼3-fold enhancement in photochemical yield of W(•) relative to F3Y(•) and a ∼7-fold enhancement relative to Y(•). Photogeneration of the W(•) radical occurs with a rate constant of (4.4 ± 0.2) × 10(5) s(-1), which obeys a Marcus correlation for radical generation at the RNR subunit interface. Despite the fact that the Y → W variant displays no enzymatic activity in the absence of light, photogeneration of W(•) within the subunit interface results in 20% activity for turnover relative to wild-type RNR under the same conditions.


Subject(s)
Escherichia coli/enzymology , Free Radicals/chemistry , Ribonucleotide Reductases/chemistry , Tryptophan/chemistry , Electron Transport , Kinetics , Models, Molecular , Oxidation-Reduction , Photochemistry , Ribonucleotide Reductases/metabolism , Tyrosine/chemistry , Tyrosine/metabolism
13.
Biochemistry ; 55(12): 1813-25, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26956769

ABSTRACT

Hydrogenases (H2ases) represent one of the most striking examples of biological proton-coupled electron transfer (PCET) chemistry, functioning in facile proton reduction and H2 oxidation involving long-range proton and electron transport. Spectroscopic and electrochemical studies of the [NiFe] H2ases have identified several catalytic intermediates, but the details of their interconversion are still a matter of debate. Here we use steady state and time-resolved infrared spectroscopy, sensitive to the CO ligand of the active site iron, as a probe of the proton inventory as well as electron and proton transfer dynamics in the soluble hydrogenase I from Pyrococcus furiosus. Subtle shifts in infrared signatures associated with the Nia-C and Nia-S states as a function of pH revealed an acid-base equilibrium associated with an ionizable amino acid near the active site. Protonation of this residue was found to correlate with the photoproduct distribution that results from hydride photolysis of the Nia-C state, in which one of the two photoproduct states becomes inaccessible at low pH. Additionally, the ability to generate Nia-S via PCET from Nia-C was weakened at low pH, suggesting prior protonation of the proton acceptor. Kinetic and thermodynamic analysis of electron and proton transfer with respect to the various proton inventories was utilized to develop a chemical model for reversible hydride oxidation involving two intermediates differing in their hydrogen bonding character.


Subject(s)
Carbon/metabolism , Hydrogenase/metabolism , Nickel/metabolism , Protons , Sulfur/metabolism , Hydrogen Bonding , Oxidation-Reduction
14.
J Am Chem Soc ; 137(13): 4558-66, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25790178

ABSTRACT

The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR(-). The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.


Subject(s)
Biocatalysis , Hydrogenase/metabolism , Protons , Catalytic Domain , Electron Transport , Hydrogen-Ion Concentration , Hydrogenase/chemistry , Kinetics , Models, Molecular , Photochemical Processes , Pyrococcus furiosus/enzymology , Temperature
15.
ACS Nano ; 6(10): 9150-7, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-22966955

ABSTRACT

DNAzymes are catalytic oligonucleotides with important applications in gene regulation, DNA computing, responsive soft materials, and ultrasensitive metal-ion sensing. The most significant challenge for using DNAzymes in vivo pertains to nontoxic delivery and maintaining function inside cells. We synthesized multivalent deoxyribozyme "10-23" gold nanoparticle (DzNP) conjugates, varying DNA density, linker length, enzyme orientation, and linker composition in order to study the role of the steric environment and gold surface chemistry on catalysis. DNAzyme catalytic efficiency was modulated by steric packing and proximity of the active loop to the gold surface. Importantly, the 10-23 DNAzyme was asymmetrically sensitive to the gold surface and when anchored through the 5' terminus was inhibited 32-fold. This property was used to generate DNAzymes whose catalytic activity is triggered by thiol displacement reactions or by photoexcitation at λ = 532 nm. Importantly, cell studies revealed that DzNPs are less susceptible to nuclease degradation, readily enter mammalian cells, and catalytically down-regulate GDF15 gene expression levels in breast cancer cells, thus addressing some of the key limitations in the adoption of DNAzymes for in vivo work.


Subject(s)
Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Nanocapsules/chemistry , Nanocapsules/ultrastructure , RNA Interference , RNA/administration & dosage , RNA/genetics , Transfection/methods , Catalysis , Humans
16.
J Am Chem Soc ; 134(27): 11108-11, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22716776

ABSTRACT

We report photocatalytic H(2) production by hydrogenase (H(2)ase)-quantum dot (QD) hybrid assemblies. Quenching of the CdTe exciton emission was observed, consistent with electron transfer from the quantum dot to H(2)ase. GC analysis showed light-driven H(2) production in the presence of a sacrificial electron donor with an efficiency of 4%, which is likely a lower limit for these hybrid systems. FTIR spectroscopy was employed for direct observation of active-site reduction in unprecedented detail for photodriven H(2)ase catalysis with sensitivity toward both H(2)ase and the sacrificial electron donor. Photosensitization with Ru(bpy)(3)(2+) showed distinct FTIR photoreduction properties, generating all of the states along the steady-state catalytic cycle with minimal H(2) production, indicating slow, sequential one-electron reduction steps. Comparing the H(2)ase activity and FTIR results for the two systems showed that QDs bind more efficiently for electron transfer and that the final enzyme state is different for the two sensitizers. The possible origins of these differences and their implications for the enzymatic mechanism are discussed.


Subject(s)
Hydrogen/metabolism , Hydrogenase/metabolism , Quantum Dots , Thiocapsa roseopersicina/enzymology , 3-Mercaptopropionic Acid/chemistry , Cadmium Compounds/chemistry , Catalysis , Catalytic Domain , Electron Transport , Hydrogenase/chemistry , Light , Models, Molecular , Oxidation-Reduction , Photochemical Processes , Tellurium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...