Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 9(3): 763-775, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336881

ABSTRACT

Many bacterial surface glycans such as the peptidoglycan (PG) cell wall are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting carrier is distributed among competing pathways has remained unclear. Here we describe the isolation of hyperactive variants of Pseudomonas aeruginosa MraY, the enzyme that forms the first lipid-linked PG precursor. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in vitro. The activated MraY variants have substitutions that map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural and molecular dynamics results suggest that this cavity is a binding site for externalized lipid II. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism that prevents the sequestration of lipid carrier in the PG biogenesis pathway.


Subject(s)
Bacteria , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Feedback , Cell Wall/metabolism , Lipids
2.
bioRxiv ; 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37577621

ABSTRACT

Many bacterial surface glycans such as the peptidoglycan (PG) cell wall, O-antigens, and capsules are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting lipid carrier is effectively distributed among competing pathways has remained unclear for some time. Here, we describe the isolation and characterization of hyperactive variants of Pseudomonas aeruginosa MraY, the essential and conserved enzyme catalyzing the formation of the first lipid-linked PG precursor called lipid I. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in a purified system. Amino acid substitutions within the activated MraY variants unexpectedly map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural evidence and molecular dynamics simulations suggest that the cavity is a binding site for lipid II molecules that have been transported to the outer leaflet of the membrane. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism to prevent the sequestration of lipid carrier in the PG biogenesis pathway. MraY belongs to the broadly distributed polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase (PNPT) superfamily of enzymes. We therefore propose that similar feedback mechanisms may be widely employed to coordinate precursor supply with demand by polymerases, thereby optimizing the partitioning of lipid carriers between competing glycan biogenesis pathways.

3.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34429361

ABSTRACT

A cell wall made of the heteropolymer peptidoglycan (PG) surrounds most bacterial cells. This essential surface layer is required to prevent lysis from internal osmotic pressure. The class A penicillin-binding proteins (aPBPs) play key roles in building the PG network. These bifunctional enzymes possess both PG glycosyltransferase (PGT) and transpeptidase (TP) activity to polymerize the wall glycans and cross-link them, respectively. In Escherichia coli and other gram-negative bacteria, aPBP function is dependent on outer membrane lipoproteins. The lipoprotein LpoA activates PBP1a and LpoB promotes PBP1b activity. In a purified system, the major effect of LpoA on PBP1a is TP stimulation. However, the relevance of this activation to the cellular function of LpoA has remained unclear. To better understand why PBP1a requires LpoA for its activity in cells, we identified variants of PBP1a from E. coli and Pseudomonas aeruginosa that function in the absence of the lipoprotein. The changes resulting in LpoA bypass map to the PGT domain and the linker region between the two catalytic domains. Purification of the E. coli variants showed that they are hyperactivated for PGT but not TP activity. Furthermore, in vivo analysis found that LpoA is necessary for the glycan synthesis activity of PBP1a in cells. Thus, our results reveal that LpoA exerts a much greater control over the cellular activity of PBP1a than previously appreciated. It not only modulates PG cross-linking but is also required for its cognate synthase to make PG glycans in the first place.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Cell Wall/enzymology , Cross-Linking Reagents/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Lipoproteins/metabolism , Penicillin-Binding Proteins/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Peptidoglycan/metabolism , Bacterial Outer Membrane Proteins/genetics , Cross-Linking Reagents/metabolism , Escherichia coli Proteins/genetics , Lipoproteins/genetics , Penicillin-Binding Proteins/genetics , Peptidoglycan Glycosyltransferase/genetics
4.
Proc Natl Acad Sci U S A ; 115(12): 3150-3155, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29507210

ABSTRACT

Penicillin-binding proteins (PBPs) are synthases required to build the essential peptidoglycan (PG) cell wall surrounding most bacterial cells. The mechanisms regulating the activity of these enzymes to control PG synthesis remain surprisingly poorly defined given their status as key antibiotic targets. Several years ago, the outer-membrane lipoprotein EcLpoB was identified as a critical activator of Escherichia coli PBP1b (EcPBP1b), one of the major PG synthases of this organism. Activation of EcPBP1b is mediated through the association of EcLpoB with a regulatory domain on EcPBP1b called UB2H. Notably, Pseudomonas aeruginosa also encodes PBP1b (PaPBP1b), which possesses a UB2H domain, but this bacterium lacks an identifiable LpoB homolog. We therefore searched for potential PaPBP1b activators and identified a lipoprotein unrelated to LpoB that is required for the in vivo activity of PaPBP1b. We named this protein LpoP and found that it interacts directly with PaPBP1b in vitro and is conserved in many Gram-negative species. Importantly, we also demonstrated that PaLpoP-PaPBP1b as well as an equivalent protein pair from Acinetobacter baylyi can fully substitute for EcLpoB-EcPBP1b in E. coli for PG synthesis. Furthermore, we show that amino acid changes in PaPBP1b that bypass the PaLpoP requirement map to similar locations in the protein as changes promoting EcLpoB bypass in EcPBP1b. Overall, our results indicate that, although different Gram-negative bacteria activate their PBP1b synthases with distinct lipoproteins, they stimulate the activity of these important drug targets using a conserved mechanism.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Penicillin-Binding Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Acinetobacter/chemistry , Bacterial Proteins/genetics , Cell Wall/metabolism , DNA Transposable Elements , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Lipoproteins/chemistry , Lipoproteins/genetics , Lipoproteins/metabolism , Mutation , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/genetics , Phylogeny , Pseudomonas aeruginosa/cytology , Pseudomonas aeruginosa/genetics
5.
PLoS Pathog ; 11(6): e1004996, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26114646

ABSTRACT

Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and is a significant pathogen worldwide. Pneumolysin (Ply) is a multi-functional, extracellular virulence factor produced by this organism that is critical for pathogenesis. Despite the absence of any apparent secretion or cell surface attachment motifs, Ply localizes to the cell envelope of actively growing cells. We sought to characterize the consequences of this surface localization. Through functional assays with whole cells and subcellular fractions, we determined that Ply activity and its release into the extracellular environment are inhibited by peptidoglycan (PG) structure. The ability of PG to inhibit Ply release was dependent on the stem peptide composition of this macromolecule, which was manipulated by mutation of the murMN operon that encodes proteins responsible for branched stem peptide synthesis. Additionally, removal of choline-binding proteins from the cell surface significantly reduced Ply release to levels observed in a mutant with a high proportion of branched stem peptides suggesting a link between this structural feature and surface-associated choline-binding proteins involved in PG metabolism. Of clinical relevance, we also demonstrate that a hyperactive, mosaic murMN allele associated with penicillin resistance causes decreased Ply release with concomitant increases in the amount of branched stem peptides. Finally, using a murMN deletion mutant, we observed that increased Ply release is detrimental to virulence during a murine model of pneumonia. Taken together, our results reveal a novel role for branched stem peptides in pneumococcal pathogenesis and demonstrate the importance of controlled Ply release during infection. These results highlight the importance of PG composition in pathogenesis and may have broad implications for the diverse PG structures observed in other bacterial pathogens.


Subject(s)
Peptidoglycan/metabolism , Pneumococcal Infections/immunology , Streptococcus pneumoniae/pathogenicity , Streptolysins/metabolism , Virulence Factors/metabolism , Animals , Bacterial Proteins/metabolism , Cell Wall/microbiology , Mice , Penicillin Resistance/physiology , Peptidoglycan/chemistry , Virulence/genetics
6.
J Immunol ; 194(4): 1763-75, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25609842

ABSTRACT

Although neutrophils are the most abundant cells in acute infection and inflammation, relatively little attention has been paid to their role in inflammasome formation and IL-1ß processing. In the present study, we investigated the mechanism by which neutrophils process IL-1ß in response to Streptococcus pneumoniae. Using a murine model of S. pneumoniae corneal infection, we demonstrated a requirement for IL-1ß in bacterial clearance, and we showed that Nod-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and caspase-1 are essential for IL-1ß production and bacterial killing in the cornea. Neutrophils in infected corneas had multiple specks with enzymatically active caspase-1 (YVAD-FLICA 660), and bone marrow neutrophils stimulated with heat-killed S. pneumoniae (signal 1) and pneumolysin (signal 2) exhibited multiple specks when stained for NLRP3, ASC, or Caspase-1. High-molecular mass ASC complexes were also detected, consistent with oligomer formation. Pneumolysin induced K(+) efflux in neutrophils, and blocking K(+) efflux inhibited caspase-1 activation and IL-1ß processing; however, neutrophils did not undergo pyroptosis, indicating that K(+) efflux and IL-1ß processing is not a consequence of cell death. There was also no role for lysosomal destabilization or neutrophil elastase in pneumolysin-mediated IL-1ß processing in neutrophils. Taken together, these findings demonstrate an essential role for neutrophil-derived IL-1ß in S. pneumoniae infection, and they elucidate the role of the NLRP3 inflammasome in cleavage and secretion of IL-1ß in neutrophils. Given the ubiquitous presence of neutrophils in acute bacterial and fungal infections, these findings will have implications for other microbial diseases.


Subject(s)
Caspase 1/immunology , Inflammasomes/immunology , Interleukin-1beta/immunology , Neutrophils/immunology , Potassium/metabolism , Animals , Apoptosis Regulatory Proteins/immunology , Bacterial Proteins/immunology , Blotting, Western , CARD Signaling Adaptor Proteins , Carrier Proteins/immunology , Caspase 1/metabolism , Disease Models, Animal , Enzyme Activation/immunology , Enzyme-Linked Immunosorbent Assay , Eye Infections, Bacterial/immunology , Eye Infections, Bacterial/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Interleukin-1beta/metabolism , Keratitis/immunology , Keratitis/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophils/metabolism , Pneumococcal Infections , Signal Transduction/immunology , Spectrophotometry, Atomic , Streptolysins/immunology
7.
J Virol ; 86(15): 8171-84, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22623783

ABSTRACT

Herpes simplex virus type 1 (HSV-1) enters cells by fusion of its envelope with a host cell membrane, which requires four viral glycoproteins and a cellular receptor. Viral fusion glycoprotein B (gB) mediates membrane fusion through the action of its ectodomain, while its cytoplasmic domain (cytodomain) regulates fusion from the opposite face of the membrane by an unknown mechanism. The gB cytodomain appears to restrict fusion, because point or truncation mutations within it increase the extent of fusion (syn mutations). Previously, we showed that the hyperfusion phenotype correlated with reduced membrane binding in gB syn truncation mutants and proposed that membrane binding was important in regulating fusion. Here, we extended our analysis to three syn point mutants: A855V, R858H, and A874P. These mutations produce local conformational changes, with some affecting membrane interaction, which suggests that while syn mutants may deregulate fusion by somewhat different mechanisms, maintaining the wild-type (WT) conformation is critical for fusion regulation. We further show that the presence of a membrane is necessary for the cytodomain to achieve its fully folded conformation and propose that the membrane-bound form of the cytodomain represents its native conformation. Taken together, our data suggest that the cytodomain of gB regulates fusion by a novel mechanism in which membrane interaction plays a key role.


Subject(s)
Herpesvirus 1, Human/metabolism , Membrane Fusion , Protein Folding , Viral Envelope Proteins/metabolism , Viral Fusion Proteins/metabolism , Amino Acid Substitution , Animals , CHO Cells , Cricetinae , Cricetulus , Herpesvirus 1, Human/genetics , Mutation, Missense , Protein Structure, Tertiary , Viral Envelope Proteins/genetics , Viral Fusion Proteins/genetics
8.
J Bacteriol ; 194(14): 3651-60, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22563048

ABSTRACT

Streptococcus pneumoniae is a major causative agent of otitis media, pneumonia, bacteremia, and meningitis. Pneumolysin (Ply), a member of the cholesterol-dependent cytolysins (CDCs), is produced by virtually all clinical isolates of S. pneumoniae, and ply mutant strains are severely attenuated in mouse models of colonization and infection. In contrast to all other known members of the CDC family, Ply lacks a signal peptide for export outside the cell. Instead, Ply has been hypothesized to be released upon autolysis or, alternatively, via a nonautolytic mechanism that remains undefined. We show that an exogenously added signal sequence is not sufficient for Sec-dependent Ply secretion in S. pneumoniae but is sufficient in the surrogate host Bacillus subtilis. Previously, we showed that Ply is localized primarily to the cell wall compartment in the absence of detectable cell lysis. Here we show that Ply released by autolysis cannot reassociate with intact cells, suggesting that there is a Ply export mechanism that is coupled to cell wall localization of the protein. This putative export mechanism is capable of secreting a related CDC without its signal sequence. We show that B. subtilis can export Ply, suggesting that the export pathway is conserved. Finally, through truncation and domain swapping analyses, we show that export is dependent on domain 2 of Ply.


Subject(s)
Streptococcus pneumoniae/metabolism , Streptolysins/metabolism , Amino Acid Sequence , Bacillus subtilis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriolysis , Base Sequence , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Models, Molecular , Molecular Sequence Data , Protein Conformation , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Streptolysins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...