Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Nature ; 563(7731): 374-378, 2018 11.
Article in English | MEDLINE | ID: mdl-30429543

ABSTRACT

High-temperature copper oxide superconductors consist of stacked CuO2 planes, with electronic band structures and magnetic excitations that are primarily two-dimensional1,2, but with superconducting coherence that is three-dimensional. This dichotomy highlights the importance of out-of-plane charge dynamics, which has been found to be incoherent in the normal state3,4 within the limited range of momenta accessible by optics. Here we use resonant inelastic X-ray scattering to explore the charge dynamics across all three dimensions of the Brillouin zone. Polarization analysis of recently discovered collective excitations (modes) in electron-doped copper oxides5-7 reveals their charge origin, that is, without mixing with magnetic components5-7. The excitations disperse along both the in-plane and out-of-plane directions, revealing its three-dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the distance between neighbouring CuO2 planes rather than to the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction is responsible for the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought 'acoustic plasmon', which is a branch of distinct charge collective modes predicted for layered systems8-12 and argued to play a substantial part in mediating high-temperature superconductivity10-12.

2.
Nat Commun ; 6: 7183, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25990638

ABSTRACT

LiTi2O4 is a unique compound in that it is the only known spinel oxide superconductor. The lack of high quality single crystals has thus far prevented systematic investigations of its transport properties. Here we report a careful study of transport and tunnelling spectroscopy in epitaxial LiTi2O4 thin films. An unusual magnetoresistance is observed which changes from nearly isotropic negative to prominently anisotropic positive as the temperature is decreased. We present evidence that shows that the negative magnetoresistance likely stems from the suppression of local spin fluctuations or spin-orbit scattering centres. The positive magnetoresistance suggests the presence of an orbital-related state, also supported by the fact that the superconducting energy gap decreases as a quadratic function of magnetic field. These observations indicate that the spin-orbital fluctuations play an important role in LiTi2O4 in a manner similar to high-temperature superconductors.

3.
Nat Commun ; 6: 6041, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25608106

ABSTRACT

Superconductivity is a striking example of a quantum phenomenon in which electrons move coherently over macroscopic distances without scattering. The high-temperature superconducting oxides (cuprates) are the most studied class of superconductors, composed of two-dimensional CuO2 planes separated by other layers that control the electron concentration in the planes. A key unresolved issue in cuprates is the relationship between superconductivity and magnetism. Here we report a sharp phase boundary of static three-dimensional magnetic order in the electron-doped superconductor La(2-x)Ce(x)CuO(4-δ), where small changes in doping or depth from the surface switch the material from superconducting to magnetic. Using low-energy spin-polarized muons, we find that static magnetism disappears close to where superconductivity begins and well below the doping level at which dramatic changes in the transport properties are reported. These results indicate a higher degree of symmetry between the electron and hole-doped cuprates than previously thought.

4.
Sci Rep ; 4: 7321, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25471303

ABSTRACT

A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.

5.
J Phys Condens Matter ; 26(40): 405701, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25219526

ABSTRACT

We report superconducting anisotropy measurements in the electron-doped high-Tc superconductors (HTSCs) Pr(2-x)Ce(x)C(u)O(4-y) (PCCO, x = 0.15 and 0.17) with an applied magnetic field (H0) up to 28 T. Our results show that the upper critical field [H(c2)(T)] of PCCO is highly anisotropic and as the temperature T → 0, the value of it at H0 ∥ c [H(c2,∥c)(0)] is far less than the Pauli limit. The low temperature anisotropic character of PCCO is found to be rather similar to that of hole-doped cuprate HTSCs, but apparently larger than that of typical Fe-based superconductors. This study also proves a new sensitive probe of detecting rich properties of unconventional superconductors with the use of the resonant frequency of an NMR probe circuit.

6.
Rev Sci Instrum ; 84(6): 063903, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23822353

ABSTRACT

Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.

7.
Nature ; 476(7358): 73-5, 2011 Aug 03.
Article in English | MEDLINE | ID: mdl-21814279

ABSTRACT

Although it is generally accepted that superconductivity is unconventional in the high-transition-temperature copper oxides, the relative importance of phenomena such as spin and charge (stripe) order, superconductivity fluctuations, proximity to a Mott insulator, a pseudogap phase and quantum criticality are still a matter of debate. In electron-doped copper oxides, the absence of an anomalous pseudogap phase in the underdoped region of the phase diagram and weaker electron correlations suggest that Mott physics and other unidentified competing orders are less relevant and that antiferromagnetic spin fluctuations are the dominant feature. Here we report a study of magnetotransport in thin films of the electron-doped copper oxide La(2 - x)Ce(x)CuO(4). We show that a scattering rate that is linearly dependent on temperature--a key feature of the anomalous normal state properties of the copper oxides--is correlated with the electron pairing. We also show that an envelope of such scattering surrounds the superconducting phase, surviving to zero temperature when superconductivity is suppressed by magnetic fields. Comparison with similar behaviour found in organic superconductors strongly suggests that the linear dependence on temperature of the resistivity in the electron-doped copper oxides is caused by spin-fluctuation scattering.

8.
Phys Rev Lett ; 106(19): 197002, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21668192

ABSTRACT

We report on laser-excited angle-resolved photoemission spectroscopy in the electron-doped cuprate Sm1.85Ce0.15CuO(4-δ). The data show the existence of a nodal hole-pocket Fermi surface both in the normal and superconducting states. We prove that its origin is long-range antiferromagnetism by an analysis of the coherence factors in the main and folded bands. This coexistence of long-range antiferrmagnetism and superconductivity implies that electron-doped cuprates are two-Fermi-surface superconductors. The measured superconducting gap in the nodal hole pocket is compatible with a d-wave symmetry.

9.
Phys Rev Lett ; 100(9): 097001, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18352743

ABSTRACT

Utilizing resonant inelastic x-ray scattering, we report a previously unobserved mode in the excitation spectrum of La2-xSrxCuO4 and Nd2CuO4 at 500 meV. The mode is peaked around the (pi, 0) point in reciprocal space and is observed to soften, and broaden, away from this point. Samples with x=0, 0.01, 0.05, and 0.17 were studied. The new mode is found to be rapidly suppressed with increasing Sr content and is absent at x=0.17, where it is replaced by a continuum of excitations. This mode is only observed when the incident x-ray polarization is normal to the CuO planes.

10.
Phys Rev Lett ; 99(14): 147004, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17930707

ABSTRACT

We report a tunneling study between Pr(2-x)Ce(x)CuO(4-delta) and lead as a function of doping, temperature, and magnetic field. The temperature dependence of the gap follows the BCS prediction. Our data fit a nonmonotonic d-wave order parameter for the whole doping range studied. From our data we are able to conclude that the electron-doped cuprate Pr(2-x)Ce(x)CuO(4-delta) is a weak-coupling BCS dirty superconductor.

11.
Phys Rev Lett ; 99(4): 047003, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17678392

ABSTRACT

We report resistivity and Hall effect measurements in electron-doped Pr2-xCexCuO4-delta films in magnetic field up to 58 T. In contrast to hole-doped cuprates, we find a surprising nonlinear magnetic field dependence of Hall resistivity at high field in the optimally doped and overdoped films. We also observe a crossover from quadratic to linear field dependence of the positive magnetoresistance in the overdoped films. A spin density wave induced Fermi surface reconstruction model can be used to qualitatively explain both the Hall effect and magnetoresistance.

12.
Phys Rev Lett ; 94(18): 187003, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15904403

ABSTRACT

The temperature dependence of the tunneling conductance was measured for various doping levels of Pr(2-x)CexCuO4 using planar junctions. A normal state gap is seen at all doping levels studied, x=0.11 to x=0.19. We find it to vanish above a certain temperature T*. T* is greater than T(c) for the underdoped region and it follows T(c) on the overdoped side. This behavior suggests finite pairing amplitude above T(c) on the underdoped side.

13.
Phys Rev Lett ; 94(5): 057005, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15783682

ABSTRACT

The temperature, doping, and field dependences of the magnetoresistance (MR) in Pr2-xCexCuO4-delta films are reported. We distinguish between orbital MR, found when the magnetic field is applied perpendicular to the ab planes, and the nearly isotropic spin MR. The latter, the major MR effect in the superconducting samples, appears in the region of the doping-temperature phase diagram where drho/dT<0, or an upturn in the resistivity appears. We conclude that the upturn originates from spin scattering processes.

14.
Phys Rev Lett ; 93(6): 067001, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15323654

ABSTRACT

We present specific heat measurements on Pr(2-x)CexCuO(4-delta) single crystals which show an unexpected change in the field dependence of the electronic specific heat (Cel) from linear at T = 2 K to nonlinear at T > or = 3 K. We consider several possible explanations for this change and propose, as a possible interpretation, a phase transition in the symmetry of the order parameter from nodal (e.g., d wave) at T > or = 3 K to gapped (e.g., s wave) at T = 2 K. Such a phase transition could be an explanation for the previous conflicting experimental results on the pairing symmetry in the electron-doped cuprates.

15.
Phys Rev Lett ; 92(16): 166601, 2004 Apr 23.
Article in English | MEDLINE | ID: mdl-15169250

ABSTRACT

We report a detailed magnetic and structural analysis of highly reduced Co doped rutile TiO(2-delta) films displaying an anomalous Hall effect (AHE). The temperature and field dependence of magnetization, and transmission electron microscopy, clearly establish the presence of nanosized superparamagnetic cobalt clusters of approximately 8-10 nm size in the films at the interface. The co-occurrence of superparamagnetism and AHE raises questions regarding the use of the AHE as a test of the intrinsic nature of ferromagnetism in diluted magnetic semiconductors.

16.
Phys Rev Lett ; 92(16): 167001, 2004 Apr 23.
Article in English | MEDLINE | ID: mdl-15169253

ABSTRACT

The doping and temperature dependences of the Hall coefficient, R(H), and ab-plane resistivity in the normal state down to 350 mK is reported for oriented films of the electron-doped high-T(c) superconductor Pr(2-x)Ce(x)CuO(4-delta). The doping dependences of beta (rho=rho(0)+ATbeta) and R(H) (at 350 mK) suggest a quantum phase transition at a critical doping near x=0.165.

17.
Phys Rev Lett ; 92(4): 047003, 2004 Jan 30.
Article in English | MEDLINE | ID: mdl-14995397

ABSTRACT

63Cu nuclear magnetic resonance spin-echo decay rate (T-12) measurements are reported for the normal and superconducting states of a single crystal of Pr(1.85)Ce(0.15)CuO(4-y) in a magnetic field B(0)=9 T over the temperature range 2

18.
Phys Rev Lett ; 91(14): 147002, 2003 Oct 03.
Article in English | MEDLINE | ID: mdl-14611547

ABSTRACT

We report muon-spin rotation and relaxation (muSR) measurements on single crystals of the electron-doped high-T(c) superconductor Pr2-xCexCuO4. In a zero external magnetic field, superconductivity is found to coexist with dilute Cu spins that are static on the muSR time scale. In an applied field, we observe a mu(+)-Knight shift that is primarily due to the magnetic moment induced on the Pr ions. Below the superconducting transition temperature T(c), an additional source of local magnetic field appears throughout the volume of the sample. This finding is shown to be consistent with field-induced antiferromagnetic ordering of the Cu spins. Measurements of the temperature dependence of the in-plane magnetic penetration depth lambda(ab) in the vortex state are also presented.

19.
Phys Rev Lett ; 91(7): 077205, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12935053

ABSTRACT

The occurrence of room temperature ferromagnetism is demonstrated in pulsed laser deposited thin films of Sn(1-x)Co(x)O(2-delta) (x<0.3). Interestingly, films of Sn(0.95)Co(0.05)O(2-delta) grown on R-plane sapphire not only exhibit ferromagnetism with a Curie temperature close to 650 K, but also a giant magnetic moment of 7.5+/-0.5 micro(B)/Co, not yet reported in any diluted magnetic semiconductor system. The films are semiconducting and optically highly transparent.

20.
Science ; 298(5594): 805-7, 2002 Oct 25.
Article in English | MEDLINE | ID: mdl-12242450

ABSTRACT

Upon cooling, the isolated ferromagnetic domains in thin films of La0.33Pr0.34Ca0.33MnO3 start to grow and merge at the metal-insulator transition temperature TP1, leading to a steep drop in resistivity, and continue to grow far below TP1. In contrast, upon warming, the ferromagnetic domain size remains unchanged until near the transition temperature. The jump in the resistivity results from the decrease in the average magnetization. The ferromagnetic domains almost disappear at a temperature TP2 higher than TP1, showing a local magnetic hysteresis in agreement with the resistivity hysteresis. Even well above TP2, some ferromagnetic domains with higher transition temperatures are observed, indicating magnetic inhomogeneity. These results may shed more light on the origin of the magnetoresistance in these materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...