Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Microrna ; 12(3): 171-176, 2023.
Article in English | MEDLINE | ID: mdl-38009000

ABSTRACT

Different modes of gene regulation, such as histone modification, transcription factor binding, DNA methylation, and microRNA (miRNA) expression, are critical for the spatiotemporal expression of genes in developing orofacial tissues. Aberrant regulation in any of these modes may contribute to orofacial defects. Noncoding RNAs (ncRNAs), such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs), have been shown to alter miRNA expression, and are thus emerging as novel contributors to gene regulation. Some of these appear to function as 'miRNA sponges', thereby diminishing the availability of these miRNAs to inhibit the expression of target genes. Such ncRNAs are also termed competitive endogenous RNAs (ceRNAs). Here, we examine emerging data that shed light on how lncRNAs and circRNAs may alter miRNA regulation, thus affecting orofacial development and potentially contributing to orofacial clefting.


Subject(s)
Cleft Lip , Cleft Palate , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cleft Lip/genetics , Cleft Palate/genetics , Gene Regulatory Networks
2.
Microrna ; 12(1): 63-81, 2023.
Article in English | MEDLINE | ID: mdl-36200240

ABSTRACT

BACKGROUND: Neural tube (NT) morphogenesis is reliant on the proper temporospatial expression of numerous genes and synchronized crosstalk between diverse signaling cascades and gene regulatory networks governing key cellular processes. MicroRNAs (miRNAs), a group of small non-coding regulatory RNAs, execute defining roles in directing key canonical pathways during embryogenesis. OBJECTIVE: In order to comprehend the mechanistic underpinnings of miRNA regulation of NT morphogenesis, we have identified in the current study various miRNAs and their target mRNAs associated with BMP signaling during critical stages of neurulation. METHODS: We previously demonstrated the expression of several miRNAs during the critical stages of neurulation (gestational days (GD) 8.5, 9.0, and 9.5) employing high-sensitivity, high-coverage microarrays. In the present study, bioinformatic analyses were used to identify miRNAs differentially expressed (DE) in the embryonic NT that target messenger RNAs (mRNAs) associated with the bone morphogenetic protein (BMP) signaling pathway. RNAs extracted from the developing NT were hybridized to both miRNA and mRNA arrays to evaluate miRNA-mRNA interactions. RESULTS: Bioinformatic analysis identified several DE miRNAs that targeted mRNAs encoding members of (and proteins associated with) the BMP signaling pathway - a signaling cascade central to normal NT development. CONCLUSION: Identification of the miRNAs and their mRNA targets associated with BMP signaling facilitates a better understanding of the crucial epigenetic mechanisms underlying normal NT development as well as the pathogenesis of NT defects. The current study supports the notion that miRNAs function as key regulators of neural tube morphogenesis via modulation of the BMP signaling cascade. Altered expression of these miRNAs during neurulation may therefore result in NT defects.


Subject(s)
MicroRNAs , Neural Tube , Neural Tube/metabolism , MicroRNAs/genetics , Embryonic Development , Signal Transduction/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling
3.
Cleft Palate Craniofac J ; 60(1): 27-38, 2023 01.
Article in English | MEDLINE | ID: mdl-34730446

ABSTRACT

OBJECTIVE: Normal development of the embryonic orofacial region requires precise spatiotemporal coordination between numerous genes. MicroRNAs represent small, single-stranded, non-coding molecules that regulate gene expression. This study examines the role of microRNA-22 (miR-22) in murine orofacial ontogeny. METHODS: Spatiotemporal and differential expression of miR-22 (mmu-miR-22-3p) within the developing secondary palate was determined by in situ hybridization and quantitative real-time PCR, respectively. Bioinformatic approaches were used to predict potential mRNA targets of miR-22 and analyze their association with cellular functions indispensable for normal orofacial ontogeny. An in vitro palate organ culture system was used to assess the role of miR-22 in secondary palate development. RESULTS: There was a progressive increase in miR-22 expression from GD12.5 to GD14.5 in palatal processes. On GD12.5 and GD13.5, miR-22 was expressed in the future oral, nasal, and medial edge epithelia. On GD14.5, miR-22 expression was observed in the residual midline epithelial seam (MES), the nasal epithelium and the mesenchyme, but not in the oral epithelium. Inhibition of miR-22 activity in palate organ cultures resulted in failure of MES removal. Bioinformatic analyses revealed potential mRNA targets of miR-22 that may play significant roles in regulating apoptosis, migration, and/or convergence/extrusion, developmental processes that modulate MES removal during palatogenesis. CONCLUSIONS: Results from the current study suggest a key role for miR-22 in the removal of the MES during palatogenesis and that miR-22 may represent a potential contributor to the etiology of cleft palate.


Subject(s)
MicroRNAs , Humans , Animals , Mice , Real-Time Polymerase Chain Reaction , MicroRNAs/genetics , Palate
4.
Differentiation ; 124: 1-16, 2022.
Article in English | MEDLINE | ID: mdl-35144134

ABSTRACT

Environmental and genetic factors contribute significantly to the etiology of orofacial clefting, which is one of the most common of human congenital craniofacial malformations. Current biological thought now recognizes that epigenetics represents a fundamental contributing process in embryogenesis. Indeed, many of the mechanisms whereby environmental insults affect key pathways crucial for proper embryonic growth and development are increasingly thought to be mediated via the epigenome. Epigenetic regulators, such as microRNAs (miRNAs), play vital roles in the ontogeny of the orofacial region. Evidence for this comes from conditional knockouts of Dicer or DGCR8, genes encoding key enzymes in the miRNA biosynthetic machinery, in neural crest cells. Such knockouts result in a range of craniofacial/orofacial anomalies, including cleft palate and cleft lip. Epigenetic pathways may thus represent key vehicles in the regulation, and misregulation, of gene expression during normal and abnormal orofacial embryogenesis. Significant strides have been made in the last decade in identifying miRNAs and their target genes involved in lip and palate morphogenesis. Such morphogenetic processes include apoptosis, cell proliferation, cell differentiation, and epithelial-mesenchymal transition (EMT). While some of the miRNA-target gene interactions have been functionally validated, many exhibit causal relationships that await functional confirmation. A plethora of genes associated with cleft palate/cleft lip have now been identified that provides a veritable treasure trove of information that could be harnessed to identify novel miRNA candidates for further analysis. In this review, we summarize studies identifying miRNAs involved in various aspects of lip and palate morphogenesis and whose aberrant expression may result in orofacial clefts.


Subject(s)
Cleft Lip , Cleft Palate , MicroRNAs , Cleft Lip/genetics , Cleft Palate/genetics , Epigenesis, Genetic/genetics , Humans , MicroRNAs/genetics , RNA-Binding Proteins
5.
Microrna ; 11(1): 2-11, 2022.
Article in English | MEDLINE | ID: mdl-35168515

ABSTRACT

It is estimated that 2-4% of live births will have a birth defect (BD). The availability of biomarkers for the prenatal detection of BDs will facilitate early risk assessment, prompt medical intervention and ameliorating disease severity. miRNA expression levels are often found to be altered in many diseases. There is, thus, a growing interest in determining whether miRNAs, particularly extracellular miRNAs, can predict, diagnose, or monitor BDs. These miRNAs, typically encapsulated in exosomes, are released by cells (including those of the fetus and placenta) into the extracellular milieu, such as blood, urine, saliva and cerebrospinal fluid, thereby enabling interaction with target cells. Exosomal miRNAs are stable, protected from degradation, and retain functionality. The observation that placental and fetal miRNAs can be detected in maternal serum, provides a strong rationale for adopting miRNAs as noninvasive prenatal biomarkers for BDs. In this mini-review, we examine the current state of research involving the use of miRNAs as prognostic and diagnostic biomarkers for BD.


Subject(s)
Exosomes , MicroRNAs , Biomarkers , Congenital Abnormalities , Exosomes/genetics , Exosomes/metabolism , Female , Humans , Infant, Newborn , MicroRNAs/genetics , Placenta/metabolism , Pregnancy , Saliva
6.
Cell Biochem Funct ; 38(7): 905-920, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32129905

ABSTRACT

MicroRNAs (miRNAs) provide context-dependent transcriptional regulation of genes comprising signalling networks throughout the developing organism including morphogenesis of the embryonic neural tube (NT). Using a high-sensitivity, high-coverage microarray analysis platform, miRNA expression in the murine embryonic NT during the critical stages of its formation was examined. Analysis of a number of differentially expressed (DE) miRNAs enabled identification of several gene targets associated with cellular processes essential for normal NT development. Using computational pathway analysis, interactive biologic networks and functional relationships connecting DE miRNAs with their targeted messenger RNAs (mRNAs) were identified. Potential mRNA targets and a key signal transduction pathway governing critical cellular processes indispensable for normal mammalian neurulation were also identified. RNA preparations were also used to hybridize both miRNA arrays and mRNA arrays allowing miRNA-mRNA target analysis using data of DE miRNAs and DE mRNAs - co-expressed in the same developing NT tissue samples. Identification of these miRNA targets provides key insight into the epigenetic regulation of NT development as well as into potential mechanistic underpinning of NT defects. SIGNIFICANCE OF THE STUDY: This study underscores the premise that microRNAs are potential coordinators of normal neural tube (NT) formation, via regulation of the crucial, planar cell polarity pathway. Any alteration in their expression during neurulation would result in abnormal NT development.


Subject(s)
MicroRNAs/metabolism , Neural Tube/metabolism , Animals , Cell Polarity , Embryonic Development/genetics , Female , Gene Expression Regulation, Developmental , Male , Mice , Mice, Inbred ICR , Neural Tube/growth & development , RNA, Messenger/metabolism , Signal Transduction/genetics , Wnt Signaling Pathway
7.
Microrna ; 9(3): 168-173, 2020.
Article in English | MEDLINE | ID: mdl-31556862

ABSTRACT

The adverse developmental effects of exposure to Cigarette Smoke (CS) during pregnancy are documented in this paper. These include low birth weight, congenital anomalies, preterm birth, fetal mortality and morbidity. The current biological thought now recognizes that epigenetics represents a fundamental contributing process in embryogenesis, and that the environment can have a profound effect on shaping the epigenome. It has become increasingly recognized that genes encoding microRNAs (miRNAs) might be potential loci for congenital disabilities. One means by which CS can cause developmental anomalies may be through epigenetic mechanisms involving altered miRNA expression. While several studies have focused on genes affected by CS during embryonic/ fetal development, there is a paucity of knowledge on the involvement of miRNAs in this process. This brief review summarizes the current state of knowledge in this area.


Subject(s)
Embryonic Development/drug effects , Epigenesis, Genetic/drug effects , MicroRNAs/genetics , Smoking/adverse effects , Female , Gene Expression Regulation, Developmental/drug effects , Humans , Pregnancy
8.
Birth Defects Res ; 111(17): 1294-1301, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31400084

ABSTRACT

Maternal smoking during pregnancy represents a major public health concern increasing the risk for low birth weight, congenital anomalies, preterm birth, fetal mortality, and morbidity. In an effort to diminish adverse developmental effects of exposure to cigarette smoking, pregnant women, and women of reproductive age, are increasingly turning to electronic nicotine delivery systems (ENDS), such as e-cigarettes, as an alternative. Given that health risks associated with ENDS use during pregnancy are largely unknown, there is an acute need to determine risks vs. benefits of e-cigarette use by pregnant women. While the most recent Surgeon General's Report on the "Health Consequences of Smoking" states that "the evidence is sufficient to infer that nicotine adversely affects maternal and fetal health during pregnancy, contributing to multiple adverse outcomes," it remains unclear whether use of ENDS represents a "safer alternative" to tobacco smoking during pregnancy. This is due, in part, to the lack of sufficient and conclusive evidence concerning whether or not maternal e-cigarette use adversely affects embryonic/fetal development. While several recent developmental studies have challenged the safety of nicotine inhalation via ENDS, the true risks of smoking e-cigarettes during the first trimester of pregnancy-the period of organogenesis-are largely unknown. Moreover, evidence is emerging that even nicotine-free e-cigarette aerosols may harm the developing conceptus, suggesting that components of e-cigarette liquid, including flavorings, may be developmentally toxicity. Focused human epidemiological analyses, and carefully designed animal studies are critically needed to address the question of the safety of ENDS use during pregnancy.


Subject(s)
Aerosols/adverse effects , Cigarette Smoking/adverse effects , Nicotine/adverse effects , Aerosols/toxicity , Animals , Animals, Newborn , Electronic Nicotine Delivery Systems , Female , Fetus/drug effects , Humans , Infant, Newborn , Nicotine/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/physiopathology , Vaping/trends
9.
Birth Defects Res ; 111(20): 1593-1610, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31385455

ABSTRACT

In this review, we highlight the current state of knowledge of the diverse roles nucleic acid methylation plays in the embryonic development of the orofacial region and how aberrant methylation may contribute to orofacial clefts. We also consider the role of methylation in the regulation of neural crest cell function as it pertains to orofacial ontogeny. Changes in DNA methylation, as a consequence of environmental effects, have been observed in the regulatory regions of several genes, potentially identifying new candidate genes for orofacial clefting and opening promising new avenues for further research. While the focus of this review is primarily on the nonsyndromic forms of orofacial clefting, syndromic forms are briefly discussed in the context of aberrant nucleic acid methylation.


Subject(s)
DNA Methylation , Face/embryology , Morphogenesis , Mouth/embryology , Nucleic Acids/metabolism , Animals , Humans , Neural Crest/embryology
10.
Methods Mol Biol ; 1976: 121-133, 2019.
Article in English | MEDLINE | ID: mdl-30977070

ABSTRACT

The purpose of this chapter is to provide a step-by-step protocol to enable performance of laser capture microdissection (LCM) on tissue sections from mammalian embryos or postnatal organism stages in order to collect pure populations of neural crest cells from which sufficient amounts of nucleic acids and/or protein can be obtained for quantitative analysis. The methods (1) define a strategy to genetically and indelibly label mammalian neural crest-derived cells with a fluorescent marker, thus enabling their isolation throughout the pre- and postnatal life span of the organism, and (2) describe subsequent isolation by LCM of the labeled neural crest cells, or their derivatives, from embryonic/postnatal tissue cryosections. Details are provided for using the Arcturus PixCell®IIe Laser Capture Microdissection System (Arcturus) and CapSure LCM Caps (Thermo Fisher Scientific), to which the selected cells adhere upon laser-mediated capture. The protocol outlined herein can be applied in any situation wherein limited cellular samples are available for isolation by LCM. Nucleic acids or proteins can be extracted from LCM-isolated cells and processed for high-density gene expression profiling analyses (microarrays or RNA sequencing), Real-Time PCR (q-PCR) for specific candidate gene expression, investigation of DNA methylation, as well as for varied protein analyses.


Subject(s)
Laser Capture Microdissection/methods , Neural Crest/cytology , Animals , DNA Methylation , Embryo, Mammalian/cytology , Gene Expression Profiling/methods , Mice
11.
Reprod Toxicol ; 86: 76-85, 2019 06.
Article in English | MEDLINE | ID: mdl-30953684

ABSTRACT

Prenatal exposure to arsenic, a naturally occurring toxic element, causes neural tube defects (NTDs) and, in animal models, orofacial anomalies. Since aberrant development or migration of cranial neural crest cells (CNCCs) can also cause similar anomalies within developing embryos, we examined the effects of in utero exposure to sodium arsenate on gene expression patterns in pure populations of CNCCs, isolated by fluorescence activated cell sorting (FACS), from Cre/LoxP reporter mice. Changes in gene expression were analyzed using Affymetrix GeneChip® microarrays and expression of selected genes was verified by TaqMan quantitative real-time PCR. We report, for the first time, arsenate-induced alterations in the expression of a number of novel candidate genes and canonical cascades that may contribute to the pathogenesis of orofacial defects. Ingenuity Pathway and NIH-DAVID analyses revealed cellular response pathways, biological themes, and potential upstream regulators, that may underlie altered fetal programming of arsenate exposed CNCCs.


Subject(s)
Arsenates/toxicity , Gene Expression Regulation, Developmental/drug effects , Maternal-Fetal Exchange , Neural Crest/drug effects , Animals , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Female , Mice, Transgenic , Neural Crest/metabolism , Pregnancy
12.
Microrna ; 8(1): 43-60, 2019.
Article in English | MEDLINE | ID: mdl-30068287

ABSTRACT

BACKGROUND: Development of the mammalian palate is dependent on precise, spatiotemporal expression of a panoply of genes. MicroRNAs (miRNAs), the largest family of noncoding RNAs, function as crucial modulators of cell and tissue differentiation, regulating expression of key downstream genes. OBSERVATIONS: Our laboratory has previously identified several developmentally regulated miRNAs, including miR-206, during critical stages of palatal morphogenesis. The current study reports spatiotemporal distribution of miR-206 during development of the murine secondary palate (gestational days 12.5-14.5). RESULT AND CONCLUSION: Potential cellular functions and downstream gene targets of miR-206 were investigated using functional assays and expression profiling, respectively. Functional analyses highlighted potential roles of miR-206 in governing TGFß- and Wnt signaling in mesenchymal cells of the developing secondary palate. In addition, altered expression of miR-206 within developing palatal tissue of TGFß3-/- fetuses reinforced the premise that crosstalk between this miRNA and TGFß3 is crucial for secondary palate development.


Subject(s)
Gene Expression Regulation, Developmental , MicroRNAs/genetics , Palate/metabolism , Animals , Cells, Cultured , Mice , MicroRNAs/metabolism , Palate/embryology , Wnt Signaling Pathway
13.
Drug Metab Rev ; 50(2): 193-207, 2018 05.
Article in English | MEDLINE | ID: mdl-29455551

ABSTRACT

5-Aza-2'-deoxycytidine (AzaD), also known as Decitabine, is a deoxycytidine analog that is typically used to activate methylated and silenced genes by promoter demethylation. However, a survey of the scientific literature indicates that promoter demethylation may not be the only (or, indeed, the major) mechanism by which AzaD affects gene expression. Regulation of gene expression by AzaD can occur in several ways, including some that are independent of DNA demethylation. Results from several studies indicate that the effect of AzaD on gene expression is highly context-dependent and can differ for the same gene under different environmental settings. This may, in part, be due to the nature of the silencing mechanism(s) involved - DNA methylation, repressive histone modifications, or a combination of both. The varied effects of AzaD on such context-dependent regulation of gene expression may underlie some of the diverse responses exhibited by patients undergoing AzaD therapy. In this review, we describe the salient properties of AzaD with particular emphasis on its diverse effects on gene expression, aspects that have barely been discussed in most reviews of this interesting drug.


Subject(s)
Azacitidine/analogs & derivatives , Animals , Antimetabolites, Antineoplastic/pharmacology , Azacitidine/pharmacology , DNA Methylation/drug effects , Decitabine , Gene Expression/drug effects , Humans
14.
Reprod Toxicol ; 67: 85-99, 2017 01.
Article in English | MEDLINE | ID: mdl-27915011

ABSTRACT

In this study, we identify gene targets and cellular events mediating the teratogenic action(s) of 5-Aza-2'-deoxycytidine (AzaD), an inhibitor of DNA methylation, on secondary palate development. Exposure of pregnant mice (on gestation day (GD) 9.5) to AzaD for 12h resulted in the complete penetrance of cleft palate (CP) in fetuses. Analysis of cells of the embryonic first branchial arch (1-BA), in fetuses exposed to AzaD, revealed: 1) significant alteration in expression of genes encoding several morphogenetic factors, cell cycle inhibitors and regulators of apoptosis; 2) a decrease in cell proliferation; and, 3) an increase in apoptosis. Pyrosequencing of selected genes, displaying pronounced differential expression in AzaD-exposed 1-BAs, failed to reveal significant alterations in CpG methylation levels in their putative promoters or gene bodies. CpG methylation analysis suggested that the effects of AzaD on gene expression were likely indirect.


Subject(s)
Azacitidine/analogs & derivatives , Branchial Region/drug effects , Cleft Palate/chemically induced , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects , Animals , Apoptosis/drug effects , Apoptosis/genetics , Azacitidine/toxicity , Branchial Region/embryology , Branchial Region/pathology , Cell Proliferation/drug effects , Cleft Palate/embryology , Cleft Palate/genetics , Cleft Palate/pathology , DNA Methylation/drug effects , Decitabine , Embryonic Development/genetics , Female , Gene Expression Profiling , Gestational Age , Mice, Inbred ICR , Pregnancy
15.
Reprod Toxicol ; 67: 100-110, 2017 01.
Article in English | MEDLINE | ID: mdl-27923600

ABSTRACT

Defects in development of the secondary palate, which arise from the embryonic first branchial arch (1-BA), can cause cleft palate (CP). Administration of 5-Aza-2'-deoxycytidine (AzaD), a demethylating agent, to pregnant mice on gestational day 9.5 resulted in complete penetrance of CP in fetuses. Several genes critical for normal palatogenesis were found to be upregulated in 1-BA, 12h after AzaD exposure. MethylCap-Seq (MCS) analysis identified several differentially methylated regions (DMRs) in DNA extracted from AzaD-exposed 1-BAs. Hypomethylated DMRs did not correlate with the upregulation of genes in AzaD-exposed 1-BAs. However, most DMRs were associated with endogenous retroviral elements. Expression analyses suggested that interferon signaling was activated in AzaD-exposed 1-BAs. Our data, thus, suggest that a 12-h in utero AzaD exposure demethylates and activates endogenous retroviral elements in the 1-BA, thereby triggering an interferon-mediated response. This may result in the dysregulation of key signaling pathways during palatogenesis, causing CP.


Subject(s)
Azacitidine/analogs & derivatives , Branchial Region/drug effects , Cleft Palate/chemically induced , DNA Methylation/drug effects , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects , Animals , Azacitidine/toxicity , Branchial Region/embryology , Cleft Palate/embryology , Cleft Palate/genetics , Decitabine , Embryonic Development/genetics , Female , Gene Expression Profiling , Gestational Age , Mice, Inbred ICR , Pregnancy
16.
Reprod Toxicol ; 65: 414-424, 2016 10.
Article in English | MEDLINE | ID: mdl-27319396

ABSTRACT

Utilizing a mouse model of 'active' developmental cigarette smoke exposure (CSE) [gestational day (GD) 1 through postnatal day (PD) 21] characterized by offspring low birth weight, the impact of developmental CSE on liver proteome profiles of adult offspring at 6 months of age was determined. Liver tissue was collected from Sham- and CSE-offspring for 2D-SDS-PAGE based proteome analysis with Partial Least Squares-Discriminant Analysis (PLS-DA). A similar study conducted at the cessation of exposure to cigarette smoke documented decreased gluconeogenesis coupled to oxidative stress in weanling offspring. In the current study, exposure throughout development to cigarette smoke resulted in impaired hepatic carbohydrate metabolism, decreased serum glucose levels, and increased gluconeogenic regulatory enzyme abundances during the fed-state coupled to decreased expression of SIRT1 as well as increased PEPCK and PGC1α expression. Together these findings indicate inappropriately timed gluconeogenesis that may reflect impaired insulin signaling in mature offspring exposed to 'active' developmental CSE.


Subject(s)
Liver/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Proteome/drug effects , Smoke/adverse effects , Tobacco Products , Tobacco Smoke Pollution/adverse effects , Aldosterone/metabolism , Amino Acids/metabolism , Animals , Blood Glucose/analysis , Carbohydrate Metabolism , Cytoskeletal Proteins/metabolism , Female , Glutathione/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Lipid Metabolism , Liver/metabolism , Maternal Exposure/adverse effects , Maternal-Fetal Exchange , Mice, Inbred C57BL , Oxidative Stress , Pregnancy
17.
Reprod Toxicol ; 65: 425-435, 2016 10.
Article in English | MEDLINE | ID: mdl-27208485

ABSTRACT

Cigarette smoke exposure (CSE) during gestation and early development suppresses the growth trajectory in offspring. In prior studies utilizing a mouse model of 'active' developmental CSE (GD1-PD21), low birth weight induced by CSE persisted throughout the neonatal period and was present at the cessation of exposure at weaning with proportionally smaller kidney mass that was accompanied by impairment of carbohydrate metabolism. In the present study, littermates of those characterized in the prior study were maintained until 6 months of age at which time the impact of developmental CSE on the abundance of proteins associated with cellular metabolism in the kidney was examined. Kidney protein abundances were examined by 2D-SDS-PAGE based proteome profiling with statistical analysis by Partial Least Squares-Discriminant Analysis. Key findings of this study include a persistence of impact of developmental CSE past the original exposure period on the nucleic acid and carbohydrate metabolism networks and oxidant scavenging pathways.


Subject(s)
Kidney/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Proteome/drug effects , Tobacco Smoke Pollution/adverse effects , Animals , Carbohydrate Metabolism/drug effects , Female , Kidney/metabolism , Maternal Exposure/adverse effects , Maternal-Fetal Exchange , Mice, Inbred C57BL , Nucleic Acids/metabolism , Pregnancy
18.
Reprod Toxicol ; 65: 436-447, 2016 10.
Article in English | MEDLINE | ID: mdl-27208486

ABSTRACT

Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. Utilizing a murine experimental model of "active" inhalation exposure to cigarette smoke spanning the entirety of gestation and through human third trimester equivalent hippocampal development [gestation day 1 (GD1) through postnatal day 21 (PD21)], we examined hippocampus proteome and metabolome alterations present at a time during which developmental cigarette smoke exposure (CSE)-induced behavioral and cognitive impairments are evident in adult animals from this model system. At six month of age, carbohydrate metabolism and lipid content in the hippocampus of adult offspring remained impacted by prior exposure to cigarette smoke during the critical period of hippocampal ontogenesis indicating limited glycolysis. These findings indicate developmental CSE-induced systemic glucose availability may limit both organism growth and developmental trajectory, including the capacity for learning and memory.


Subject(s)
Hippocampus/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Proteome/drug effects , Smoke/adverse effects , Tobacco Products , Tobacco Smoke Pollution/adverse effects , Animals , Carbohydrate Metabolism/drug effects , Female , Hippocampus/metabolism , Lipid Metabolism/drug effects , Maternal Exposure/adverse effects , Maternal-Fetal Exchange , Mice, Inbred C57BL , Pregnancy
19.
Exp Cell Res ; 342(1): 32-8, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26921506

ABSTRACT

p300 is a multifunctional transcriptional coactivator that interacts with numerous transcription factors and exhibits protein/histone acetyltransferase activity. Loss of p300 function in humans and in mice leads to craniofacial defects. In this study, we demonstrated that inhibition of p300 histone acetyltransferase activity with the compound, C646, altered the expression of several genes, including Cdh1 (E-cadherin) in mouse maxillary mesenchyme cells, which are the cells that give rise to the secondary palate. The increased expression of plasma membrane-bound E-cadherin was associated with reduced cytosolic ß-catenin, that led to attenuated signaling through the canonical Wnt pathway. Furthermore, C646 reduced both cell proliferation and the migratory ability of these cells. These results suggest that p300 histone acetyltransferase activity is critical for Wnt-dependent palate mesenchymal cell proliferation and migration, both processes that play a significant role in morphogenesis of the palate.


Subject(s)
Cadherins/metabolism , E1A-Associated p300 Protein/physiology , Wnt Signaling Pathway , Animals , Benzoates/pharmacology , Cadherins/genetics , Cell Movement , Cells, Cultured , E1A-Associated p300 Protein/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Female , Gene Expression , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Histones/metabolism , Male , Mesoderm/cytology , Mesoderm/embryology , Mice, Inbred ICR , Morphogenesis , Nitrobenzenes , Palate/cytology , Palate/embryology , Palate/metabolism , Pyrazoles/pharmacology , Pyrazolones , beta Catenin/metabolism
20.
Reprod Toxicol ; 58: 140-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26482727

ABSTRACT

Orofacial clefts, the most prevalent of developmental anomalies, occur with a frequency of 1 in 700 live births. Maternal cigarette smoking during pregnancy represents a risk factor for having a child with a cleft lip and/or cleft palate. Using primary cultures of first branchial arch-derived cells (1-BA cells), which contribute to the formation of the lip and palate, the present study addressed the hypothesis that components of cigarette smoke alter global DNA methylation, and/or expression of DNA methyltransferases (Dnmts) and various methyl CpG-binding proteins. Primary cultures of 1-BA cells, exposed to 80µg/mL cigarette smoke extract (CSE) for 24h, exhibited a >13% decline in global DNA methylation and triggered proteasomal-mediated degradation of Dnmts (DNMT-1 and -3a), methyl CpG binding protein 2 (MeCP2) and methyl-CpG binding domain protein 3 (MBD-3). Pretreatment of 1-BA cells with the proteasomal inhibitor MG-132 completely reversed such degradation. Collectively, these data allow the suggestion of a potential epigenetic mechanism underlying maternal cigarette smoke exposure-induced orofacial clefting.


Subject(s)
Branchial Region/enzymology , Cleft Lip/genetics , Cleft Palate/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Methyl-CpG-Binding Protein 2/metabolism , Proteasome Endopeptidase Complex/metabolism , Smoke/adverse effects , Tobacco Products/adverse effects , Transcription Factors/metabolism , Animals , Branchial Region/drug effects , Branchial Region/pathology , Cells, Cultured , Cleft Lip/enzymology , Cleft Palate/enzymology , CpG Islands , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation/drug effects , DNA Methyltransferase 3A , Epigenesis, Genetic/drug effects , Female , Mice, Inbred ICR , Pregnancy , Primary Cell Culture , Proteasome Inhibitors/pharmacology , Proteolysis , Risk Factors , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...